|   | 
Details
   web
Records
Author Arbelaez, C.; Dib, C.; Monsalvez-Pozo, K.; Schmidt, I.
Title (down) Quasi-Dirac neutrinos in the linear seesaw model Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 154 - 22pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We implement a minimal linear seesaw model (LSM) for addressing the Quasi-Dirac (QD) behaviour of heavy neutrinos, focusing on the mass regime of M-N less than or similar to M-W. Here we show that for relatively low neutrino masses, covering the few GeV range, the same-sign to opposite-sign dilepton ratio, R-ll, can be anywhere between 0 and 1, thus signaling a Quasi-Dirac regime. Particular values of R-ll are controlled by the width of the QD neutrino and its mass splitting, the latter being equal to the light-neutrino mass m(nu) in the LSM scenario. The current upper bound on m(nu 1) together with the projected sensitivities of current and future |U-N l|(2) experimental measurements, set stringent constraints on our low-scale QD mass regime. Some experimental prospects of testing the model by LHC displaced vertex searches are also discussed.
Address [Arbelaez, Carolina; Dib, Claudio; Schmidt, Ivan] Univ Tecn Federico Santa Maria, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000677622200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4930
Permanent link to this record
 

 
Author Fioresi, R.; Lledo, M.A.
Title (down) Quantum Supertwistors Type Journal Article
Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 13 Issue 7 Pages 1241 - 16pp
Keywords star products; superspace; non-commutative spacetime; quantum groups; quantum supergroups
Abstract In this paper, we give an explicit expression for a star product on the super-Minkowski space written in the supertwistor formalism. The big cell of the super-Grassmannian Gr(2|0,4|1) is identified with the chiral, super-Minkowski space. The super-Grassmannian is a homogeneous space under the action of the complexification SL(4|1) of SU(2,2|1), the superconformal group in dimension 4, signature (1,3), and supersymmetry N=1. The quantization is done by substituting the groups and homogeneous spaces by their quantum deformed counterparts. The calculations are done in Manin's formalism. When we restrict to the big cell, we can explicitly compute an expression for the super-star product in the Minkowski superspace associated to this deformation and the choice of a certain basis of monomials.
Address [Fioresi, Rita] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy, Email: fioresi@dm.unibo.it;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000677165600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4909
Permanent link to this record
 

 
Author Muñoz, E.; Ros, A.; Borja-Lloret, M.; Barrio, J.; Dendooven, P.; Oliver, J.F.; Ozoemelam, I.; Roser, J.; Llosa, G.
Title (down) Proton range verification with MACACO II Compton camera enhanced by a neural network for event selection Type Journal Article
Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 11 Issue 1 Pages 9325 - 12pp
Keywords
Abstract The applicability extent of hadron therapy for tumor treatment is currently limited by the lack of reliable online monitoring techniques. An active topic of investigation is the research of monitoring systems based on the detection of secondary radiation produced during treatment. MACACO, a multi-layer Compton camera based on LaBr3 scintillator crystals and SiPMs, is being developed at IFIC-Valencia for this purpose. This work reports the results obtained from measurements of a 150 MeV proton beam impinging on a PMMA target. A neural network trained on Monte Carlo simulations is used for event selection, increasing the signal to background ratio before image reconstruction. Images of the measured prompt gamma distributions are reconstructed by means of a spectral reconstruction code, through which the 4.439 MeV spectral line is resolved. Images of the emission distribution at this energy are reconstructed, allowing calculation of the distal fall-off and identification of target displacements of 3 mm.
Address [Munoz, Enrique; Ros, Ana; Borja-Lloret, Marina; Barrio, John; Oliver, Josep F.; Roser, Jorge; Llosa, Gabriela] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Valencia, Spain, Email: Enrique.Munoz@ific.uv.es
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:000651603500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4836
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title (down) Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment DUNE Collaboration Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 4 Pages 322 - 51pp
Keywords
Abstract The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: lkoerner@central.uh.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000641453500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4809
Permanent link to this record
 

 
Author Ling, P.; Dai, X.H.; Du, M.L.; Wang, Q.
Title (down) Prompt production of the hidden charm pentaquarks in the LHC Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 9 Pages 819 - 15pp
Keywords
Abstract Motivated by the observation of the first hidden charm pentaquarks by the LHCb collaboration in 2015 and the updated analysis with an order-of-magnitude larger data set in 2019, we estimate their cross sections for the prompt production as well as their heavy quark spin partners, in the Sigma(()(c)*()) (D) over bar (()*()) hadronic molecular picture, at the center-of-mass energy 7 TeV in the pp collision. Their cross sections are several nb and we would expect several tens hidden charm pentaquark events in the LHC based on its current integrated luminosity. The cross sections show a sizable deviation of the cross sections for hidden charm pentaquarks with the third isospin component Iz = + 1/2 (P-c(+)) from those with Iz = – 1/2 (P-c(0)). The cross sections decrease dramatically with the increasing transverse momentum. Our study can also tell where to search for the missing hidden charm pentaquarks. The confirmation of the complete hidden charm pentaquarks in the heavy quark symmetry would further verify their Sigma(()(c)*()) (D) over bar (()*()) molecular interpretation. In addition, the relative strength among these cross sections for pentaquarks can help us to identify the quantum numbers of the P-c(4440) and P-c(4457).
Address [Ling, Pan; Dai, Xiao-Hu; Wang, Qian] South China Normal Univ, Inst Quantum Matter, Guangdong Prov Key Lab Nucl Sci, Guangzhou 510006, Peoples R China, Email: du.menglin@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000696534900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4972
Permanent link to this record