toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schiavone, T.; Montani, G.; Bombacigno, F. url  doi
openurl 
  Title (down) f(R) gravity in the Jordan frame as a paradigm for the Hubble tension Type Journal Article
  Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 522 Issue 1 Pages L72-L77  
  Keywords supernovae: general; galaxies: distances and redshifts; cosmological parameters; dark energy; cosmology: theory  
  Abstract We analyse the f(R) gravity in the so-called Jordan frame, as implemented to the isotropic Universe dynamics. The goal of the present study is to show that according to recent data analyses of the supernovae Ia Pantheon sample, it is possible to account for an effective redshift dependence of the Hubble constant. This is achieved via the dynamics of a non-minimally coupled scalar field, as it emerges in the f(R) gravity. We face the question both from an analytical and purely numerical point of view, following the same technical paradigm. We arrive to establish that the expected decay of the Hubble constant with the redshift z is ensured by a form of the scalar field potential, which remains essentially constant for z less than or similar to 0.3, independently if this request is made a priori, as in the analytical approach, or obtained a posteriori, when the numerical procedure is addressed. Thus, we demonstrate that an f(R) dark energy model is able to account for an apparent variation of the Hubble constant due to the rescaling of the Einstein constant by the f(R) scalar mode.  
  Address [Schiavone, Tiziano] Univ Pisa, Dept Phys Fermi, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy, Email: tschiavone@fc.ul.pt  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001066034100015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5672  
Permanent link to this record
 

 
Author Basilakos, S.; Mavromatos, N.E.; Mitsou, V.A.; Plionis, M. url  doi
openurl 
  Title (down) Dynamics and constraints of the dissipative Liouville cosmology Type Journal Article
  Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 36 Issue 1 Pages 7-17  
  Keywords Cosmology; Dark matter; Dark energy  
  Abstract In this article we investigate the properties of the FLRW flat cosmological models in which the cosmic expansion of the Universe is affected by a dilaton dark energy (Liouville scenario). In particular, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent supernovae type la data (SNIa), the differential ages of passively evolving galaxies, and the baryonic acoustic oscillations (BAOs) traced by the Sloan Digital Sky Survey (SDSS), we put tight constraints on the main cosmological parameters. Furthermore, we study the linear matter fluctuation field of the above Liouville cosmological models. In this framework, we compare the observed growth rate of clustering measured from the optical galaxies with those predicted by the current Liouville models. Performing various statistical tests we show that the Liouville cosmological model provides growth rates that match well with the observed growth rate. To further test the viability of the models under study, we use the Press-Schechter formalism to derive their expected redshift distribution of cluster-size halos that will be provided by future X-ray and Sunyaev-Zeldovich cluster surveys. We find that the Hubble flow differences between the Liouville and the LambdaCDM models provide a significantly different halo redshift distribution, suggesting that the models can be observationally distinguished.  
  Address [Mitsou, Vasiliki A.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: vasiliki.mitsou@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309787000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1188  
Permanent link to this record
 

 
Author Vagnozzi, S.; Visinelli, L.; Mena, O.; Mota, D.F. url  doi
openurl 
  Title (down) Do we have any hope of detecting scattering between dark energy and baryons through cosmology? Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 493 Issue 1 Pages 1139-1152  
  Keywords cosmic background radiation; cosmological parameters; cosm logy: observations; dark energy; large-scale structure of Universe  
  Abstract We consider the possibility that dark energy and baryons might scatter off each other. The type of interaction we consider leads to a pure momentum exchange, and does not affect the background evolution of the expansion history. We parametrize this interaction in an effective way at the level of Boltzmann equations. We compute the effect of dark energy-baryon scattering on cosmological observables, focusing on the cosmic microwave background (CMB) temperature anisotropy power spectrum and the matter power spectrum. Surprisingly, we find that even huge dark energy-baryon cross-sections sigma(xb) similar to O(b), which are generically excluded by non-cosmological probes such as collider searches or precision gravity tests, only leave an insignificant imprint on the observables considered. In the case of the CMB temperature power spectrum, the only imprint consists in a sub-per cent enhancement or depletion of power (depending whether or not the dark energy equation of state lies above or below -1) at very low multipoles, which is thus swamped by cosmic variance. These effects are explained in terms of differences in how gravitational potentials decay in the presence of a dark energy-baryon scattering, which ultimately lead to an increase or decrease in the late-time integrated Sachs-Wolfe power. Even smaller related effects are imprinted on the matter power spectrum. The imprints on the CMB are not expected to be degenerate with the effects due to altering the dark energy sound speed. We conclude that, while strongly appealing, the prospects for a direct detection of dark energy through cosmology do not seem feasible when considering realistic dark energy-baryon cross-sections. As a caveat, our results hold to linear order in perturbation theory.  
  Address [Vagnozzi, Sunny] Univ Cambridge, Kat Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000518156100081 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4320  
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title (down) Dark radiation sterile neutrino candidates after Planck data Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 018 - 13pp  
  Keywords cosmological neutrinos; neutrino properties; neutrino theory; dark energy theory  
  Abstract Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62(-0.48)(+0.50) at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N-eff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m(nu,sterile)(eff) < 0.36 eV and 3.14 < N-eff < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < N-eff < 4.43 and m(nu,sterile)(eff) < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. Sigma m(nu) similar to 0.06 eV. These values compromise the viability of the (3 + 2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3 + 1) massive sterile neutrino scenario, we find m(nu,sterile)(eff) < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.  
  Address [Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy, Email: eleonora.divalentino@roma1.infn.it;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327843900019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1672  
Permanent link to this record
 

 
Author Simpson, F.; Jimenez, R.; Pena-Garay, C.; Verde, L. url  doi
openurl 
  Title (down) Dark energy from the motions of neutrinos Type Journal Article
  Year 2018 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 20 Issue Pages 72-77  
  Keywords Neutrinos; Dark energy; Interactions in the dark sector  
  Abstract Ordinarily, a scalar field may only play the role of dark energy if it possesses a potential that is either extraordinarily flat or extremely fine-tuned. Here we demonstrate that these restrictions are lifted when the scalar field undergoes persistent energy exchange with another fluid. In this scenario, the field is prevented from reversing its direction of motion, and instead may come to rest while displaced from the local minimum of its potential. Therefore almost any scalar potential is capable of initiating a prolonged phase of cosmic acceleration. If the rate of energy transfer is modulated via a derivative coupling, the field undergoes a rapid process of freezing, after which the field's equation of state mimicks that of a cosmological constant. We present a physically motivated realisation in the form of a neutrino-majoron coupling, which avoids the dynamical instabilities associated with mass-varying neutrino models. Finally we discuss possible means by which this model could be experimentally verified.  
  Address [Simpson, Fergus; Jimenez, Raul; Verde, Licia] Univ Barcelona, UB IEEC, ICC, Marti i Franques 1, E-08028 Barcelona 08028, Spain, Email: feigus2@icc.ub.edu;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433904300009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3599  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva