|   | 
Details
   web
Records
Author Delhom, A.; Mariz, T.; Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J.
Title (down) Spontaneous Lorentz symmetry breaking and one-loop effective action in the metric-affine bumblebee gravity Type Journal Article
Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 018 - 27pp
Keywords gravity; modified gravity; quantum field theory on curved space; Quantum fields in curved spacetimes
Abstract The metric-affine bumblebee model in the presence of fermionic matter minimally coupled to the connection is studied. We show that the model admits an Einstein frame representation in which the matter sector is described by a non-minimal Dirac action without any analogy in the literature. Such non-minimal terms involve unconventional couplings between the bumblebee and the fermion field. We then rewrite the quadratic fermion action in the Einstein frame in the basis of 16 Dirac matrices in order to identify the coefficients for Lorentz/CPT violation in all orders of the non-minimal coupling xi. The exact result for the fermionic determinant in the Einstein frame, including all orders in xi, is also provided. We demonstrate that the axial contributions are at least of second order in the perturbative expansion of xi. Furthermore, we compute the one-loop effective potential within the weak field approximation.
Address [Delhom, Adria] Univ Tartu, Inst Phys, Lab Theoret Phys, W Ostwaldi 1, EE-50411 Tartu, Estonia, Email: adria.delhom@gmail.com;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000834157900011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5314
Permanent link to this record
 

 
Author Olmo, G.J.; Rubiera-Garcia, D.
Title (down) Some recent results on Ricci-based gravity theories Type Journal Article
Year 2022 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 31 Issue Pages 2240012 - 15pp
Keywords Metric-affine gravity; scalar fields; stellar models; junction conditions; compact objects
Abstract In this paper, metric-afline theories in which the gravity Lagrangian is built using (projectively invariant) contractions of the Ricci tensor with itself and with the metric (Ricci-based gravity theories, or RBGs for short) are reviewed. The goal is to provide a contextualized and coherent presentation of some recent results. In particular, we focus on the correspondence that exists between the field equations of these theories and those of general relativity, and comment on how this can be used to build new solutions of physical interest. We also discuss the formalism of junction conditions in the f (R) case, and provide a brief summary on current experimental and observational bounds on model parameters.
Address [Olmo, Gonzalo J.] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Valencia 46100, Spain, Email: gonzalo.olmo@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000848888900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5350
Permanent link to this record
 

 
Author Bazeia, D.; Marques, M.A.; Olmo, G.J.
Title (down) Small and hollow magnetic monopoles Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 2 Pages 025017 - 8pp
Keywords
Abstract We deal with the presence of magnetic monopoles in a non-Abelian model that generalizes the standard 't Hooft-Polyakov model in three spatial dimensions. We investigate the energy density of the static and spherically symmetric solutions to find first order differential equations that solve the equations of motion. The system is further studied and two distinct classes of solutions are obtained, one that can also be described by analytical solutions and is called a small monopole, since it is significantly smaller than the standard 't Hooft-Polyakov monopole. The other type of structure is the hollow monopole, since the energy density is endowed with a hole at its core. The hollow monopole can be smaller or larger than the standard monopole, depending on the value of the parameter that controls the magnetic permeability of the model.
Address [Bazeia, D.; Marques, M. A.; Olmo, Gonzalo J.] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000439545000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3672
Permanent link to this record
 

 
Author Benisty, D.; Olmo, G.J.; Rubiera-Garcia, D.
Title (down) Singularity-Free and Cosmologically Viable Born-Infeld Gravity with Scalar Matter Type Journal Article
Year 2021 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 13 Issue 11 Pages 2108 - 24pp
Keywords metric-affine gravity; non-singular cosmologies; born-infeld gravity; observational constraints; scalar fields
Abstract The early cosmology, driven by a single scalar field, both massless and massive, in the context of Eddington-inspired Born-Infeld gravity, is explored. We show the existence of nonsingular solutions of bouncing and loitering type (depending on the sign of the gravitational theory's parameter, epsilon) replacing the Big Bang singularity, and discuss their properties. In addition, in the massive case, we find some new features of the cosmological evolution depending on the value of the mass parameter, including asymmetries in the expansion/contraction phases, or a continuous transition between a contracting phase to an expanding one via an intermediate loitering phase. We also provide a combined analysis of cosmic chronometers, standard candles, BAO, and CMB data to constrain the model, finding that for roughly |epsilon|& LSIM;5 & BULL;10-8m2 the model is compatible with the latest observations while successfully removing the Big Bang singularity. This bound is several orders of magnitude stronger than the most stringent constraints currently available in the literature.
Address [Benisty, David] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England, Email: benidav@post.bgu.ac.il;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000726717400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5040
Permanent link to this record
 

 
Author Olmo, G.J.; Rosa, J.L.; Rubiera-Garcia, D.; Saez-Chillon Gomez, D.
Title (down) Shadows and photon rings of regular black holes and geonic horizonless compact objects Type Journal Article
Year 2023 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity
Volume 40 Issue 17 Pages 174002 - 37pp
Keywords black holes; compact objects; photon rings; shadows; metric-affine gravity; Born-Infeld gravity; regular solutions
Abstract The optical appearance of a body compact enough to feature an unstable bound orbit, when surrounded by an accretion disk, is expected to be dominated by a luminous ring of radiation enclosing a central brightness depression typically known as the shadow. Despite observational limitations, the rough details of this picture have been now confirmed by the results of the Event Horizon Telescope (EHT) Collaboration on the imaging of the M87 and Milky Way supermassive central objects. However, the precise characterization of both features-ring and shadow-depends on the interaction between the background geometry and the accretion disk, thus being a fertile playground to test our theories on the nature of compact objects and the gravitational field itself in the strong-field regime. In this work we use both features in order to test a continuous family of solutions interpolating between regular black holes and horizonless compact objects, which arise within the Eddington-inspired Born-Infeld theory of gravity, a viable extension of Einstein's general relativity (GR). To this end we consider seven distinctive classes of such configurations (five black holes and two traversable wormholes) and study their optical appearances under illumination by a geometrically and optically thin accretion disk, emitting monochromatically with three analytic intensity profiles previously suggested in the literature. We build such images and consider the sub-ring structure created by light rays crossing the disk more than once and existing on top of the main ring of radiation. We discuss in detail the modifications as compared to their GR counterparts, the Lyapunov exponents of unstable nearly-bound orbits, as well as the differences between black hole and traversable wormholes for the three intensity profiles. In addition we use the claim by the EHT Collaboration on the radius of the bright ring acting (under proper calibrations) as a proxy for the radius of the shadow itself to explore the parameter space of our solutions compatible with such a result.
Address [Olmo, Gonzalo J.] Univ Valencia, Ctr Mixto Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: drubiera@ucm.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-9381 ISBN Medium
Area Expedition Conference
Notes WOS:001043720300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5600
Permanent link to this record