|   | 
Details
   web
Records
Author Das, C.R.; Mena, O.; Palomares-Ruiz, S.; Pascoli, S.
Title (down) Determining the dark matter mass with DeepCore Type Journal Article
Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 725 Issue 4-5 Pages 297-301
Keywords Dark matter; Neutrino telescopes
Abstract Cosmological and astrophysical observations provide increasing evidence of the existence of dark matter in our Universe. Dark matter particles with a mass above a few GeV can be captured by the Sun, accumulate in the core, annihilate, and produce high energy neutrinos either directly or by subsequent decays of Standard Model particles. We investigate the prospects for indirect dark matter detection in the IceCube/DeepCore neutrino telescope and its capabilities to determine the dark matter mass.
Address [Das, Chitta R.; Palomares-Ruiz, Sergio] Univ Ten Lisboa, Inst Super Tecn, CFTP, P-1049001 Lisbon, Portugal, Email: sergio.palomares.ruiz@ist.utl.pt
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000324223100015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1589
Permanent link to this record
 

 
Author de los Rios, M.; Petac, M.; Zaldivar, B.; Bonaventura, N.R.; Calore, F.; Iocco, F.
Title (down) Determining the dark matter distribution in simulated galaxies with deep learning Type Journal Article
Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 525 Issue 4 Pages 6015-6035
Keywords methods: data analysis; software: simulations; galaxies: general; galaxies: haloes; dark matter
Abstract We present a novel method of inferring the dark matter (DM) content and spatial distribution within galaxies, using convolutional neural networks (CNNs) trained within state-of-the-art hydrodynamical simulations (Illustris-TNG100). Within the controlled environment of the simulation, the framework we have developed is capable of inferring the DM mass distribution within galaxies of mass similar to 10(11)-10(13)M(circle dot) from the gravitationally baryon-dominated internal regions to the DM-rich, baryon-depleted outskirts of the galaxies, with a mean absolute error always below approximate to 0.25 when using photometrical and spectroscopic information. With respect to traditional methods, the one presented here also possesses the advantages of not relying on a pre-assigned shape for the DM distribution, to be applicable to galaxies not necessarily in isolation, and to perform very well even in the absence of spectroscopic observations.
Address [de los Rios, Martin] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil, Email: fabio.iocco.astro@gmail.com
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:001072112100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5707
Permanent link to this record
 

 
Author Caputo, A.; Regis, M.; Taoso, M.; Witte, S.J.
Title (down) Detecting the stimulated decay of axions at radio frequencies Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 027 - 22pp
Keywords axions; dark matter theory; dark matter detectors; dwarfs galaxies
Abstract Assuming axion-like particles account for the entirety of the dark matter in the Universe, we study the possibility of detecting their decay into photons at radio frequencies. We discuss different astrophysical targets, such as dwarf spheroidal galaxies, the Galactic Center and halo, and galaxy clusters. The presence of an ambient radiation field leads to a stimulated enhancement of the decay rate; depending on the environment and the mass of the axion, the effect of stimulated emission may amplify the photon flux by serval orders of magnitude. For axion-photon couplings allowed by astrophysical and laboratory constraints (and possibly favored by stellar cooling), we find the signal to be within the reach of next-generation radio telescopes such as the Square Kilometer Array.
Address [Caputo, Andrea; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea0292@hotmail.it;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000461450100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3944
Permanent link to this record
 

 
Author Diaz-Morcillo, A.; Barcelo, J.M.G.; Guerrero, A.J.L.; Navarro, P.; Gimeno, B.; Cuneáis, S.A.; Melcon, A.A.; Cogollos, C.; Calatroni, S.; Dobrich, B.; Gallego-Puyol, J.D.; Golm, J.; Irastorza, I.G.; Malbrunot, C.; Miralda-Escude, J.; Garay, C.P.; Redondo, J.; Wuensch, W.
Title (down) Design of New Resonant Haloscopes in the Search for the Dark Matter Axion: A Review of the First Steps in the RADES Collaboration Type Journal Article
Year 2022 Publication Universe Abbreviated Journal Universe
Volume 8 Issue 1 Pages 5 - 22pp
Keywords axions; dark matter detectors; haloscopes; resonant cavities
Abstract With the increasing interest in dark matter axion detection through haloscopes, in which different international groups are currently involved, the RADES group was established in 2016 with the goal of developing very sensitive detection systems to be operated in dipole magnets. This review deals with the work developed by this collaboration during its first five years: from the first designs-based on the multi-cavity concept, aiming to increase the haloscope volume, and thereby improve sensitivity-to their evolution, data acquisition design, and finally, the first experimental run. Moreover, the envisaged work within RADES for both dipole and solenoid magnets in the short and medium term is also presented.
Address [Diaz-Morcillo, Alejandro; Garcia Barcelo, Jose Maria; Lozano Guerrero, Antonio Jose; Navarro, Pablo; Alvarez Melcon, Alejandro] Univ Politecn Cartagena, Dept Informat & Commun Technol, Cartagena 30202, Spain, Email: alejandro.diaz@upct.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000746970600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5086
Permanent link to this record
 

 
Author NEXT Collaboration (Ferrario, P. et al); Benlloch-Rodriguez, J.M.; Kekic, M.; Renner, J.; Uson, A.; Alvarez, V.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Yahlali, N.
Title (down) Demonstration of the event identification capabilities of the NEXT-White detector Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 052 - 20pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a Th-228 calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 +/- 1.5(stat) +/- 0.3(sys) % for a background acceptance of 20.6 +/- 0.4(stat) +/- 0.3(sys)% is found, in good agreement with Monte Carlo simulations. An extrapolation to the energy region of the neutrinoless double beta decay by means of Monte Carlo simulations is also carried out, and the results obtained show an improvement in background rejection over those obtained at lower energies.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: paola.ferrario@dipc.org
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000509259700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4260
Permanent link to this record