toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Guadilla, V. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title (down) Total absorption gamma-ray spectroscopy of the beta-delayed neutron emitters I-137 and Rb-95 Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 100 Issue 4 Pages 044305 - 17pp  
  Keywords  
  Abstract The decays of the beta-delayed neutron emitters( 137)I and Rb-95 have been studied with the total absorption gamma-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyvaskyla allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption gamma-ray spectrometer, a segmented detector composed of 18 NaI(T1) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt gamma rays and delayed neutron interactions to eliminate this source of contamination. Due to the sensitivity of our spectrometer, we have found a significant amount of beta intensity to states above the neutron separation energy that deexcite by gamma rays, comparable to the neutron emission probability. The competition between gamma deexcitation and neutron emission has been compared with Hauser-Feshbach calculations, and it can be understood as a nuclear structure effect. In addition, we have studied the impact of the beta-intensity distributions determined in this work on reactor decay heat and reactor antineutrino spectrum summation calculations. The robustness of our results is demonstrated by a thorough study of uncertainties and with the reproduction of the spectra of the individual modules and the module-multiplicity gated spectra. This work represents the state-of-the-art of our analysis methodology for segmented total absorption spectrometers.  
  Address [Guadilla, V; Tain, J. L.; Algora, A.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Nacher, E.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000489250100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4169  
Permanent link to this record
 

 
Author Valencia, E. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Estevez, E.; Jordan, M.D.; Rubio, B. url  doi
openurl 
  Title (down) Total absorption gamma-ray spectroscopy of the beta-delayed neutron emitters Br-87, Br-88, and Rb-94 Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 95 Issue 2 Pages 024320 - 18pp  
  Keywords  
  Abstract We investigate the decay of Br-87,Br-88 and Rb-94 using total absorption gamma-ray spectroscopy. These important fission products are beta-delayed neutron emitters. Our data show considerable beta gamma intensity, so far unobserved in high-resolution gamma-ray spectroscopy, from states at high excitation energy. We also find significant differences with the beta intensity that can be deduced from existing measurements of the beta spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for U-235 fission at cooling times in the range 1-100 s. We also use summation calculations to evaluate the impact of present data on reactor antineutrino spectra. We find a significant effect at antineutrino energies in the range of 5 to 9 MeV. In addition, we observe an unexpected strong probability for. emission from neutron unbound states populated in the daughter nucleus. The. branching is compared to Hauser-Feshbach calculations, which allow one to explain the large value for bromine isotopes as due to nuclear structure. However the branching for Rb-94, although much smaller, hints of the need to increase the radiative width gamma by one order of magnitude. This increase in gamma would lead to a similar increase in the calculated (n, gamma) cross section for this very neutron-rich nucleus with a potential impact on r process abundance calculations.  
  Address [Valencia, E.; Tain, J. L.; Algora, A.; Agramunt, J.; Estevez, E.; Jordan, M. D.; Rubio, B.] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000394662200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3015  
Permanent link to this record
 

 
Author Guadilla, V.; Algora, A.; Tain, J.L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title (down) Total absorption gamma-ray spectroscopy of niobium isomers Type Journal Article
  Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 100 Issue 2 Pages 024311 - 15pp  
  Keywords  
  Abstract The beta-intensity distributions of the decays of Nb-100gs,Nb-100m and Nb-102gs,Nb-102m have been determined using the total absorption gamma-ray spectroscopy technique. The JYFLTRAP double Penning trap system was employed in a campaign of challenging measurements performed with the decay total absorption gamma-ray spectrometer at the Ion Guide Isotope Separator On-Line facility in Jyvaskyla. Different strategies were applied to disentangle the isomeric states involved, lying very close in energy. The low-spin component of each niobium case was populated through the decay of the zirconium parent, which was treated as a contaminant. We have applied a method to extract this contamination, and additionally we have obtained beta-intensity distributions for these zirconium decays. The beta-strength distributions evaluated with these results were compared with calculations in a quasiparticle random-phase approximation, suggesting a prolate configuration for the ground states of Zr-100,Zr-102. The footprint of the Pandemonium effect was found when comparing our results for the analyses of the niobium isotopes with previous decay data. The beta-intensities of the decay of Nb-102m, for which there were no previous data, were obtained. A careful evaluation of the uncertainties was carried out, and the consistency of our results was validated taking advantage of the segmentation of our spectrometer. The final results were used as input in reactor summation calculations. A large impact on antineutrino spectrum calculations was already reported, and here we detail the significant impact on decay heat calculations.  
  Address [Guadilla, V; Algora, A.; Tain, J. L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000480237600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4105  
Permanent link to this record
 

 
Author n_TOF Collaboration (Tagliente, G. et al.); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (down) The Zr-93(n, gamma) reaction up to 8 keV neutron energy Type Journal Article
  Year 2013 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 87 Issue 1 Pages 014622 - 7pp  
  Keywords  
  Abstract The (n, gamma) reaction of the radioactive isotope Zr-93 has been measured at the n_TOF high-resolution time-of-flight facility at CERN. Resonance parameters have been extracted in the neutron energy range up to 8 keV, yielding capture widths smaller (14%) than reported in an earlier experiment. These results are important for detailed nucleosynthesis calculations and for refined studies of waste transmutation concepts. DOI: 10.1103/PhysRevC.87.014622  
  Address [Tagliente, G.; Colonna, N.; Marrone, S.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy, Email: giuseppe.tagliente@ba.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314335800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1322  
Permanent link to this record
 

 
Author n_TOF Collaboration (Tagliente, G. et al.); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (down) The Zr-92(n,gamma) reaction and its implications for stellar nucleosynthesis Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 81 Issue 5 Pages 055801 - 9pp  
  Keywords  
  Abstract Because the relatively small neutron capture cross sections of the zirconium isotopes are difficult to measure, the results of previous measurements are often not adequate for a number of problems in astrophysics and nuclear technology. Therefore, the Zr-92(n,gamma) cross section has been remeasured at the CERN n_TOF facility, providing a set of improved parameters for 44 resonances in the neutron energy range up to 40 keV. With this information the cross-section uncertainties in the keV region could be reduced to 5% as required for s-process nucleosynthesis studies and technological applications.  
  Address [Tagliente, G.; Colonna, N.; Marrone, S.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy, Email: giuseppe.tagliente@ba.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278144800074 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 444  
Permanent link to this record
 

 
Author Tain, J.L.; Agramunt, J.; Algora, A.; Aprahamian, A.; Cano-Ott, D.; Fraile, L.M.; Guerrero, C.; Jordan, M.D.; Mach, H.; Martinez, T.; Mendoza, E.; Mosconi, M.; Nolte, R. doi  openurl
  Title (down) The sensitivity of LaBr3:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 774 Issue Pages 17-24  
  Keywords Neutron sensitivity; Scintillation detectors; Lanthanum bromide; Geant4 simulations; Nuclear data libraries  
  Abstract The neutron sensitivity of a cylindrical circle minus 1.5 in x 1.5 in LaBr3:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to gamma-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.  
  Address [Tain, J. L.; Agramunt, J.; Algora, A.; Jordan, M. D.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-28040 Valencia, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347407800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2076  
Permanent link to this record
 

 
Author n_TOF Collaboration (Giubrone, G. et al); Tain, J.L. doi  openurl
  Title (down) The Role of Fe and Ni for S-process Nucleosynthesis and Innovative Nuclear Technologies Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 2106-2109  
  Keywords Neutron capture cross sections; Neutron time of flight facility; C(6)D(6) detectors; Pulse height weighting technique; Nuclear astrophysics; Advanced nuclear systems  
  Abstract The accurate measurement of neutron capture cross sections of all Fe and Ni isotopes is important for disentangling the contribution of the s-process and the r-process to the stellar nucleosynthesis of elements in the mass range 60 < A < 120. At the same time, Fe and Ni are important components of structural materials and improved neutron cross section data is relevant in the design of new nuclear systems. With the aim of obtaining improved capture data on all stable iron and nickel isotopes, a program of measurements has been launched at the CERN Neutron Time of Flight Facility n_TOF.  
  Address [Giubrone, G; Tain, JL] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46003 Valencia, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700158 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 743  
Permanent link to this record
 

 
Author Rasco, B.C.; Brewer, N.T.; Yokoyama, R.; Grzywacz, R.; Rykaczewski, K.P.; Tolosa-Delgado, A.; Agramunt, J.; Tain, J.L.; Algora, A.; Hall, O.; Griffin, C.; Davinson, T.; Phong, V.H.; Liu, J.; Nishimura, S.; Kiss, G.G.; Nepal, N.; Estrade, A. url  doi
openurl 
  Title (down) The ORNL analysis technique for extracting beta-delayed multi-neutron branching ratios with BRIKEN Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 911 Issue Pages 79-86  
  Keywords Neutron detectors; Multi-neutron emission data analysis  
  Abstract Many choices are available in order to evaluate large radioactive decay networks. There are many parameters that influence the calculated beta-decay delayed single and multi-neutron emission branching fractions. We describe assumptions about the decay model, background, and other parameters and their influence on beta-decay delayed multi-neutron emission analysis. An analysis technique, the ORNL BRIKEN analysis procedure, for determining beta-delayed multi-neutron branching ratios in beta-neutron precursors produced by means of heavy-ion fragmentation is presented. The technique is based on estimating the initial activities of zero, one, and two neutrons occurring in coincidence with an ion-implant and beta trigger. The technique allows one to extract beta-delayed multi-neutron decay branching ratios measured with the He-3 BRIKEN neutron counter. As an example, two analyses of the beta-neutron emitter Cu-77 based on different a priori assumptions are presented along with comparisons to literature values.  
  Address [Rasco, B. C.; Brewer, N. T.; Rykaczewski, K. P.] Oak Ridge Natl Lab, Phys Div, Oak Ridge, TN 37831 USA, Email: brasco@utk.edu  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000450880200013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3813  
Permanent link to this record
 

 
Author n_TOF Collaboration (Weiss, C. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title (down) The new vertical neutron beam line at the CERN n_TOF facility design and outlook on the performance Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 799 Issue Pages 90-98  
  Keywords n_TOF facility; Neutron time-of-flight; FLUKA; Neutron cross-section measurement  
  Abstract At the neutron Lime-of-flight facility n_TOF at CERN a new vertical beam line was constructed in 2014, in order to extend the experimental possibilities at this facility to an even wider range of challenging cross-section measurements of interest in astrophysics, nuclear technology and medical physics. The design of the beam line and the experimental hall was based on FLUKA Monte Carlo simulations, aiming at maximizing the neutron flux, reducing the beam halo and minimizing the background from neutrons interacting with the collimator or back-scattered in the beam dump. The present paper gives an overview on the design of the beam line and the relevant elements and provides an outlook on the expected performance regarding the neutron beam intensity, shape and energy resolution, as well as the neutron and photon backgrounds.  
  Address [Weiss, C.; Chiaveri, E.; Girod, S.; Vlachoudis, V.; Aberle, O.; Bergstroem, I.; Calviani, M.; Guerrero, C.; Sabate-Gilarte, M.; Tsinganis, A.; Brugger, M.; Cerutti, F.; Ferrari, A.; Hernandez-Prieto, A.; Kadi, Y.; Leal-Cidoncha, E.; Losito, R.; Macina, D.; Montesano, S.; Porras, I.; Rubbia, C.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000361877300015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2392  
Permanent link to this record
 

 
Author Mistry, A. K. et al; Tain, J.L.; Agramunt, J.; Algora, A.; Guadilla, V.; Morales, A.I.; Nacher, E.; Orrigo, S.E.A.; Rubio, B. doi  openurl
  Title (down) The DESPEC setup for GSI and FAIR Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1033 Issue Pages 166662 - 18pp  
  Keywords alpha, beta, gamma spectroscopy; Digital electronics; Fast timing; FAIR; DESPEC; NuSTAR  
  Abstract The DEcay SPECtroscopy (DESPEC) setup for nuclear structure investigations was developed and commissioned at GSI, Germany in preparation for a full campaign of experiments at the FRS and Super-FRS. In this paper, we report on the first employment of the setup in the hybrid configuration with the AIDA implanter coupled to the FATIMA LaBr3(Ce) fast-timing array, and high-purity germanium detectors. Initial results are shown from the first experiments carried out with the setup. An overview of the setup and function is discussed, including technical advancements along the path.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000794062100014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5343  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva