|   | 
Details
   web
Records
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lacuesta, V.R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title (down) Top-quark mass measurement in the all-hadronic t(t)over-bar decay channel at root s=8 TeV with the ATLAS detector Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 118 - 41pp
Keywords Hadron-Hadron scattering (experiments); Top physics
Abstract The top-quark mass is measured in the all-hadronic top-antitop quark decay channel using proton-proton collisions at a centre-of-mass energy of root s = 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. The data set used in the analysis corresponds to an integrated luminosity of 20.2 fb(-1). The large multi-jet background is modelled using a data-driven method. The top-quark mass is obtained from template fits to the ratio of the three-jet to the dijet mass. The three-jet mass is obtained from the three jets assigned to the top quark decay. From these three jets the dijet mass is obtained using the two jets assigned to the W boson decay. The top-quark mass is measured to be 173.72 +/- 0.55 (stat.) +/- 1.01 (syst.) GeV.
Address [Jackson, P.; Lee, L.; Petridis, A.; Whitel, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000412016600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3343
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M.
Title (down) Tools for estimating fake/non-prompt lepton backgrounds with the ATLAS detector at the LHC Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 11 Pages T11004 - 61pp
Keywords Analysis and statistical methods; Particle identification methods
Abstract Measurements and searches performed with the ATLAS detector at the CERN LHC often involve signatures with one or more prompt leptons. Such analyses are subject to 'fake/non-prompt' lepton backgrounds, where either a hadron or a lepton from a hadron decay or an electron from a photon conversion satisfies the prompt-lepton selection criteria. These backgrounds often arise within a hadronic jet because of particle decays in the showering process, particle misidentification or particle interactions with the detector material. As it is challenging to model these processes with high accuracy in simulation, their estimation typically uses data-driven methods. Three methods for carrying out this estimation are described, along with their implementation in ATLAS and their performance.
Address [Amerl, M.; Filmer, E. K.; Jackson, P.; Kong, A. X. Y.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001116977400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5884
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title (down) Time-dependent angular analysis of the decay B-s(0) -> J/psi phi and extraction of Delta Gamma(s) and the CP-violating weak phase phi(s) by ATLAS Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 072 - 34pp
Keywords Hadron-Hadron Scattering
Abstract A measurement of B-s(0) -> J/psi phi decay parameters, including the CP-violating weak phase phi(s) and the decay width difference Delta Gamma(s) is reported, using 4.9 fb(-1) of integrated luminosity collected in 2011 by the ATLAS detector from LHC pp collisions at a centre-of-mass energy root s = 7 TeV. The mean decay width Gamma(s) and the transversity amplitudes vertical bar A(0)(0)vertical bar(2) and vertical bar A(parallel to)(0)vertical bar(2) are also measured. The values reported for these parameters are: phi(s) = 0.22 +/- 0.41 (stat.) +/- 0.10 (syst.) rad Delta Gamma(s) = 0.053 +/- 0.021 (stat.) +/- 0.010 (syst.) ps(-1) Gamma(s) = 0.677 +/- 0.007 (stat.) +/- 0.004 (syst.) ps(-1) vertical bar A(0)(0)vertical bar(2) = 0.528 +/- 0.006 (stat.) +/- 0.009 (syst.) vertical bar A(parallel to)(0)vertical bar(2) = 0.220 +/- 0.008 (stat.) +/- 0.007 (syst.) where the values quoted for phi(s) and Delta Gamma(s) correspond to the solution compatible with the external measurements to which the strong phase delta(perpendicular to) is constrained and where is Delta Gamma(s) constrained to be positive. The fraction of S-wave KK or f(0) contamination through the decays B-s(0) -> J/psi K+K- (f(0)) is measured as well and is found to be consistent with zero. Results for phi(s) and Delta Gamma(s) are also presented as 68%, 90% and 95% likelihood contours, which show agreement with Standard Model expectations.
Address [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5000, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000313124000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1313
Permanent link to this record
 

 
Author Cervello, A.; Carrio, F.; Garcia, R.; Martos, J.; Soret, J.; Torres, J.; Valero, A.
Title (down) The TileCal PreProcessor interface with the ATLAS global data acquisition system at the HL-LHC Type Journal Article
Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1043 Issue Pages 167492 - 2pp
Keywords ATLAS; Tile Calorimeter; HL-LHC; TilePPr; FELIX; SWROD; DAQ
Abstract The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. It will take place throughout 2026-2028, corresponding to the Long Shutdown 3. During this upgrade, the ATLAS Tile Hadronic Calorimeter (TileCal) will replace completely on-and off-detector electronics adopting a new read-out architecture. Signals captured from TileCal are digitized by the on-detector electronics and transmitted to the TileCal PreProcessor (TilePPr) located off-detector, which provides the interface with the ATLAS trigger and data acquisition systems.TilePPr receives, process and transmits the data from the on-detector system and transmits it to the Front -End Link eXchange (FELIX) system. FELIX is the ATLAS common hardware in all the subdetectors designed to act as a data router, receiving and forwarding data to the SoftWare Read-Out Driver (SWROD) computers. FELIX also distributes the Timing, Trigger and Control (TTC) signals to the TilePPr to be propagated to the on-detector electronics. The SWROD is an ATLAS common software solution to perform detector specific data processing, including configuration, calibration, control and monitoring of the partitionIn this contribution we will introduce the new read-out elements for TileCal at the HL-LHC, the intercon-nection between the off-detector electronics and the FELIX system, the configuration and implementation for the test beam campaigns, as well as future developments of the preprocessing and monitoring status of the calorimeter modules through the SWROD infrastructure.
Address [Cervello, Antonio; Carrio, Fernando; Valero, Alberto] UV, CSIC, Inst Fis Corpuscular, Carrer Catedrat Jose Beltran Martinez 2, Valencia 46980, Spain, Email: antonio.cervello@uv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000868495700012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5399
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title (down) The performance of the jet trigger for the ATLAS detector during 2011 data taking Type Journal Article
Year 2016 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 76 Issue 10 Pages 526 - 47pp
Keywords
Abstract The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton-proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon-nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction.
Address [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000388965200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2916
Permanent link to this record