|   | 
Details
   web
Records
Author Addazi, A. et al; Martinez-Mirave, P.; Mitsou, V.A.; Palomares-Ruiz, S.; Tortola, M.; Zornoza, J.D.
Title (down) Quantum gravity phenomenology at the dawn of the multi-messenger era-A review Type Journal Article
Year 2022 Publication Progress in Particle and Nuclear Physics Abbreviated Journal Prog. Part. Nucl. Phys.
Volume 125 Issue Pages 103948 - 119pp
Keywords Lorentz invariance violation and deformation; Gamma-ray astronomy; Cosmic neutrinos; Ultra-high-energy cosmic rays; Gravitational waves
Abstract The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
Address [Addazi, A.] Sichuan Univ, Coll Phys, Ctr Theoret Phys, Chengdu 610065, Peoples R China, Email: jcarmona@unizar.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-6410 ISBN Medium
Area Expedition Conference
Notes WOS:000830343400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5312
Permanent link to this record
 

 
Author Jeong, Y.S.; Palomares-Ruiz, S.; Reno, M.H.; Sarcevic, I.
Title (down) Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 019 - 43pp
Keywords cosmological neutrinos; neutrino theory; supernova neutrinos
Abstract Sterile neutrinos with mass in the eV-scale and large mixings of order theta(0) similar or equal to 0.1 could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson phi. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, M-phi, and its coupling to sterile neutrinos, g(s). Then, we explore how to probe part of the allowed parameter space of this particular model with future observations of the diffuse supernova neutrino background by the Hyper-Kamiokande and DUNE detectors. For M-phi similar to 5 – 10 keV and g(s) similar to 10-(4) – 10(-2), as allowed by cosmological constraints, we find that interactions of diffuse supernova neutrinos with relic sterile neutrinos on their way to the Earth would result in significant dips in the neutrino spectrum which would produce unique features in the event spectra observed in these detectors.
Address [Jeong, Yu Seon; Sarcevic, Ina] Univ Arizona, Dept Phys, 1118 E 4th St, Tucson, AZ 85704 USA, Email: ysjeong@email.arizona.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000434991300006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3613
Permanent link to this record
 

 
Author Bhattacharya, A.; Esmaili, A.; Palomares-Ruiz, S.; Sarcevic, I.
Title (down) Probing decaying heavy dark matter with the 4-year IceCube HESE data Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 027 - 36pp
Keywords dark matter theory; neutrino astronomy; neutrino detectors; ultra high energy photons and neutrinos
Abstract After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20TeV and 2PeV. The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mass and lifetime of the dark matter and the normalization and spectral index of an isotropic power-law flux, for various decay channels of dark matter. We find that a significant contribution from dark matter decay is always slightly favored, either to explain the excess below 100TeV, as in the case of decays to quarks or, as in the case of neutrino channels, to explain the three multi-PeV events. Also, we consider the possibility to interpret all the data by dark matter decays only, considering various combinations of two decay channels. We show that the decaying dark matter scenario provides a better fit to HESE data than the isotropic power-law flux.
Address [Bhattacharya, Atri] Univ Liege, Space Sci Technol & Astrophys Res STAR Inst, Bat B5a, B-4000 Liege, Belgium, Email: a.bhattacharya@ulg.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000406420500009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3243
Permanent link to this record
 

 
Author Bernal, N.; Boehm, C.; Palomares-Ruiz, S.; Silk, J.; Toma, T.
Title (down) Observing Higgs boson production through its decay into gamma-rays: A messenger for dark matter candidates Type Journal Article
Year 2013 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 723 Issue 1-3 Pages 100-106
Keywords
Abstract In this Letter, we study the gamma-ray signatures subsequent to the production of a Higgs boson in space by dark matter annihilations. We investigate the cases where the Higgs boson is produced at rest or slightly boosted and show that such configurations can produce characteristic bumps in the gamma-ray data. These results are relevant in the case of the Standard Model-like Higgs boson provided that the dark matter mass is about 63 GeV, 109 GeV or 126 GeV, but can be generalized to any other Higgs boson masses. Here, we point out that it may be worth looking for a 63 GeV line since it could be the signature of the decay of a Standard Model-like Higgs boson produced in space, as in the case of a di-Higgs final state if m chi similar or equal to 126 GeV. We show that one can set generic constraints on the Higgs boson production rates using its decay properties. In particular, using the Fermi-LAT data from the galactic center, we find that the dark matter annihilation cross section into gamma+ a Standard Model-like Higgs boson produced at rest or near rest cannot exceed (sigma nu) similar to a few 10(-25) cm(3)/s or (sigma-nu) similar to a few 10(-27) cm(3)/s respectively, providing us with information on the Higgs coupling to the dark matter particle. We conclude that Higgs bosons can indeed be used as messengers to explore the dark matter mass range.
Address Univ Bonn, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany, Email: nicolas@th.physik.uni-bonn.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000320206500014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1476
Permanent link to this record
 

 
Author Salvado, J.; Mena, O.; Palomares-Ruiz, S.; Rius, N.
Title (down) Non-standard interactions with high-energy atmospheric neutrinos at IceCube Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 141 - 30pp
Keywords Neutrino Physics; Solar and Atmospheric Neutrinos
Abstract Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μtau-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal epsilon(mu tau), with the 90% credible interval given by -6.0 x 10(-3) < epsilon(mu tau) < 5.4 x 10(-3), comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of epsilon(mu tau) near its current bound.
Address [Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Aparlado Correos 22085, E-46071 Valencia, Spain, Email: jsalvado@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000397645900004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3034
Permanent link to this record