toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Double Chooz collaboration (de Kerret, H. et al); Novella, P. url  doi
openurl 
  Title (down) Yields and production rates of cosmogenic Li-9 and He-8 measured with the Double Chooz near and far detectors Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 053 - 20pp  
  Keywords Neutrino Detectors and Telescopes (experiments)  
  Abstract The yields and production rates of the radioisotopes Li-9 and He-8 created by cosmic muon spallation on C-12, have been measured by the two detectors of the Double Chooz experiment. The identical detectors are located at separate sites and depths, which means that they are subject to different muon spectra. The near (far) detector has an overburden of approximate to 120 m.w.e. (approximate to 300 m.w.e.) corresponding to a mean muon energy of 32.1 +/- 2.0 GeV (63.7 +/- 5.5 GeV). Comparing the data to a detailed simulation of the Li-9 and He-8 decays, the contribution of the He-8 radioisotope at both detectors is found to be compatible with zero. The observed Li-9 yields in the near and far detectors are 5.51 +/- 0.51 and 7.90 +/- 0.51, respectively, in units of 10(-8-1)g(-1)cm(2). The shallow overburdens of the near and far detectors give a unique insight when combined with measurements by KamLAND and Borexino to give the first multi-experiment, data driven relationship between the Li-9 yield and the mean muon energy according to the power law and Y-0 = (0.43 +/- 0.11) x 10(-8-1)g(-1)cm(2). This relationship gives future liquid scintillator based experiments the ability to predict their cosmogenic Li-9 background rates.  
  Address [Chimenti, P.] Univ Estadual Londrina, BR-86057970 Londrina, Brazil, Email: vsibille@mit.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000450197100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3802  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title (down) Volume IV The DUNE far detector single-phase technology Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 8 Pages T08010 - 619pp  
  Keywords  
  Abstract The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. Central to achieving DUNE's physics program is a far detector that combines the many tens-of-kiloton fiducial mass necessary for rare event searches with sub-centimeter spatial resolution in its ability to image those events, allowing identification of the physics signatures among the numerous backgrounds. In the single-phase liquid argon time-projection chamber (LArTPC) technology, ionization charges drift horizontally in the liquid argon under the influence of an electric field towards a vertical anode, where they are read out with fine granularity. A photon detection system supplements the TPC, directly enhancing physics capabilities for all three DUNE physics drivers and opening up prospects for further physics explorations. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume IV presents an overview of the basic operating principles of a single-phase LArTPC, followed by a description of the DUNE implementation. Each of the subsystems is described in detail, connecting the high-level design requirements and decisions to the overriding physics goals of DUNE.  
  Address [Abi, B.; Azfar, F.; Barr, G.; Kabirnezhad, M.; Reynolds, A.; Rodrigues, P.; Spagliardi, F.; Weber, A.] Univ Oxford, Oxford OX1 3RH, England  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000635160500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4785  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title (down) Volume III DUNE far detector technical coordination Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 8 Pages T08009 - 193pp  
  Keywords  
  Abstract The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.  
  Address [Abi, B.; Azfar, F.; Barr, G.; Kabirnezhad, M.; Reynolds, A.; Rodrigues, P.; Spagliardi, F.; Weber, A.] Univ Oxford, Oxford OX1 3RH, England  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000635160500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4786  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Molina Bueno, L.; Novella, P. url  doi
openurl 
  Title (down) Updated T2K measurements of muon neutrino and antineutrino disappearance using 3.6 x 10^21 protons on target Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 7 Pages 072011 - 10pp  
  Keywords  
  Abstract Muon neutrino and antineutrino disappearance probabilities are identical in the standard three-flavor neutrino oscillation framework, but CPT violation and nonstandard interactions can violate this symmetry. In this work we report the measurements of sin2 theta 23 and Delta m232 independently for neutrinos and antineutrinos. The aforementioned symmetry violation would manifest as an inconsistency in the neutrino and antineutrino oscillation parameters. The analysis discussed here uses a total of 1.97 x 1021 and 1.63 x 1021 protons on target taken with a neutrino and antineutrino beam respectively, and benefits from improved flux and cross section models, new near-detector samples and more than double the data reducing the overall uncertainty of the result. No significant deviation is observed, consistent with the standard neutrino oscillation picture.  
  Address [Labarga, L.; Ospina, N.] Univ Autonoma Madrid, Dept Theoret Phys, Madrid 28049, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001102916000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5846  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Izmaylov, A.; Novella, P.; Sorel, M. url  doi
openurl 
  Title (down) Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 x 10(21) protons on target Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 1 Pages 011102 - 9pp  
  Keywords  
  Abstract We report measurements by the T2K experiment of the parameters theta(23) and Delta m(32)(2) governing the disappearance of muon neutrinos and antineutrinos in the three-flavor neutrino oscillation model. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, the parameters are measured separately for neutrinos and antineutrinos. Using 7.482 x 10(20) POT in neutrino running mode and 7.471 x 10(20) POT in antineutrino mode, T2K obtained sin(2) (theta(23)) = 0.51(-0.07)(+0.08) and Delta (m) over bar (2)(32) = (+0.15)(-2.53) -0.13 x 10(-3) eV(2)/c(4) for neutrinos, and sin(2) ((theta) over bar (23)) = 0.42(-0.07)(+0.25) and Delta(m) over bar (2)(32) = 2.55(-0.27)(+0.33) x 10(-3) eV(2)/c(4) for antineutrinos (assuming normal mass ordering). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed.  
  Address [Ariga, A.; Ereditato, A.; Koller, P. P.; Nirkko, M.; Pistillo, C.; Redij, A.; Wilkinson, C.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, Bern, Switzerland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406639300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3228  
Permanent link to this record
 

 
Author NEXT Collaboration (Monrabal, F. et al); Laing, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Felkai, R.; Martinez, A.; Musti, M.; Querol, M.; Rodriguez, J.; Simon, A.; Torrent, J.; Botas, A.; Diaz, J.; Kekic, M.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Renner, J.; Romo-Luque, C.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title (down) The NEXT White (NEW) detector Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P12010 - 38pp  
  Keywords Double-beta decay detectors; Particle tracking detectors; Scintillators; scintillation and light emission processes (solid gas and liquid scintillators); Time projection chambers  
  Abstract Conceived to host 5 kg of xenon at a pressure of 15 bar in the fiducial volume, the NEXT-White apparatus is currently the largest high pressure xenon gas TPC using electroluminescent amplification in the world. It is also a 1:2 scale model of the NEXT-100 detector for Xe-136 beta beta 0 nu decay searches, scheduled to start operations in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2016 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. This paper describes the detector and associated infrastructures, as well as the main aspects of its initial operation.  
  Address [Ouero, M.; Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: monrabal18@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000452463500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3833  
Permanent link to this record
 

 
Author NEXT Collaboration (Jones, B.J.P. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title (down) The dynamics of ions on phased radio-frequency carpets in high pressure gases and application for barium tagging in xenon gas time projection chambers Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1039 Issue Pages 167000 - 19pp  
  Keywords RF carpets; Ion transport; Neutrinoless double beta decay; Barium tagging  
  Abstract Radio-frequency (RF) carpets with ultra-fine pitches are examined for ion transport in gases at atmospheric pressures and above. We develop new analytic and computational methods for modeling RF ion transport at densities where dynamics are strongly influenced by buffer gas collisions. An analytic description of levitating and sweeping forces from phased arrays is obtained, then thermodynamic and kinetic principles are used to calculate ion loss rates in the presence of collisions. This methodology is validated against detailed microscopic SIMION simulations. We then explore a parameter space of special interest for neutrinoless double beta decay experiments: transport of barium ions in xenon at pressures from 1 to 10 bar. Our computations account for molecular ion formation and pressure dependent mobility as well as finite temperature effects. We discuss the challenges associated with achieving suitable operating conditions, which lie beyond the capabilities of existing devices, using presently available or near-future manufacturing techniques.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA, Email: ben.jones@uta.edu  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000861747900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5372  
Permanent link to this record
 

 
Author Double Chooz collaboration (de Kerret, H. et al); Novella, P. url  doi
openurl 
  Title (down) The Double Chooz antineutrino detectors Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 9 Pages 804 - 34pp  
  Keywords  
  Abstract This article describes the setup and performance of the near and far detectors in the Double Chooz experiment. The electron antineutrinos of the Chooz nuclear power plant were measured in two identically designed detectors with different average baselines of about 400 m and 1050 m from the two reactor cores. Over many years of data taking the neutrino signals were extracted from interactions in the detectors with the goal of measuring a fundamental parameter in the context of neutrino oscillation, the mixing angle 013. The central part of the Double Chooz detectors was a main detector comprising four cylindrical volumes filled with organic liquids. From the inside towards the outside there were volumes con- taining gadolinium-loaded scintillator, gadolinium-free scintillator, a buffer oil and, optically separated, another liquid scintillator acting as veto system. Above this main detector an additional outer veto system using plastic scintillator strips was installed. The technologies developed in Double Chooz were inspiration for several other antineutrino detectors in the field. The detector design allowed implementation of efficient background rejection techniques including use of pulse shape information provided by the data acquisition system. The Double Chooz detectors featured remarkable stability, in particular for the detected photons, as well as high radiopurity of the detector components.  
  Address [Bekman, I; Cucoanes, A.; Hellwig, D.; Lucht, S.; Reinhold, B.; Schoppmann, S.; Soldin, P.; Stahl, A.; Stuken, A.; Wiebusch, C.] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany, Email: christian.buck@mpi-hd.mpg.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000852408600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5356  
Permanent link to this record
 

 
Author Novella, P. url  doi
openurl 
  Title (down) The antineutrino energy structure in reactor experiments Type Journal Article
  Year 2015 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2015 Issue Pages 364392 - 12pp  
  Keywords  
  Abstract The recent observation of an energy structure in the reactor antineutrino spectrum is reviewed. The reactor experiments Daya Bay, Double Chooz, and RENO have reported a consistent excess of antineutrinos deviating from the flux predictions, with a local significance of about 4 sigma between 4 and 6 MeV of the positron energy spectrum. The possible causes of the structure are analyzed in this work, along with the different experimental approaches developed to identify its origin. Considering the available data and results from the three experiments, the most likely explanation concerns the reactor flux predictions and the associated uncertainties. Therefore, the different current models are described and compared. The possible sources of incompleteness or inaccuracy of such models are discussed, as well as the experimental data required to improve their precision.  
  Address [Novella, Pau] CSIC, Inst Fis Corpuscular IFIC, Paterna 46980, Spain, Email: pau.novella@ific.uv.es  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corp Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367926000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2531  
Permanent link to this record
 

 
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title (down) Supernova neutrino burst detection with the Deep Underground Neutrino Experiment Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 5 Pages 423 - 26pp  
  Keywords  
  Abstract The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered.  
  Address [Andreopoulos, C.; Decowski, M. P.; De Jong, P.; Filthaut, F.; Miedema, T.; Weber, A.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: kate.scholberg@duke.edu  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000661101700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4859  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva