toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fernandez-Martinez, E.; Gonzalez-Lopez, M.; Hernandez-Garcia, J.; Hostert, M.; Lopez-Pavon, J. url  doi
openurl 
  Title (up) Effective portals to heavy neutral leptons Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 001 - 45pp  
  Keywords Neutrino Interactions; Non-Standard Neutrino Properties; Sterile or Heavy Neutrinos  
  Abstract The existence of right-handed neutrinos, or heavy neutral leptons (HNLs), is strongly motivated by the observation of neutrino masses and mixing. The mass of these new particles could lie below the electroweak scale, making them accessible to lowenergy laboratory experiments. Additional new physics at high energies can mediate new interactions between the Standard Model particles and HNLs, and is most conveniently parametrized by the neutrino Standard Model Effective Field Theory, or nu SMEFT for short. In this work, we consider the dimension six nu SMEFT operators involving one HNL field in the mass range of O(1) MeV < MN < O(100) GeV. By recasting existing experimental limits on the production and decay of new light particles, we constrain the Wilson coefficients and new physics scale of each operator as a function of the HNL mass.  
  Address [Fernandez-Martinez, Enrique; Gonzalez-Lopez, Manuel] Univ Autonoma Madrid, Inst Fis Teor, Campus Cantoblanco, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001067715500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5697  
Permanent link to this record
 

 
Author Breso-Pla, V.; Falkowski, A.; Gonzalez-Alonso, M.; Monsalvez-Pozo, K. url  doi
openurl 
  Title (up) EFT analysis of New Physics at COHERENT Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 074 - 53pp  
  Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Interactions; SMEFT  
  Abstract Using an effective field theory approach, we study coherent neutrino scattering on nuclei, in the setup pertinent to the COHERENT experiment. We include non-standard effects both in neutrino production and detection, with an arbitrary flavor structure, with all leading Wilson coefficients simultaneously present, and without assuming factorization in flux times cross section. A concise description of the COHERENT event rate is obtained by introducing three generalized weak charges, which can be associated (in a certain sense) to the production and scattering of nu(e), nu(mu) and (nu) over bar (mu) on the nuclear target. Our results are presented in a convenient form that can be trivially applied to specific New Physics scenarios. In particular, we find that existing COHERENT measurements provide percent level constraints on two combinations of Wilson coefficients. These constraints have a visible impact on the global SMEFT fit, even in the constrained flavor-blind setup. The improvement, which affects certain 4-fermion LLQQ operators, is significantly more important in a flavor-general SMEFT. Our work shows that COHERENT data should be included in electroweak precision studies from now on.  
  Address [Breso-Pla, Victor; Gonzalez-Alonso, Martin; Monsalvez-Pozo, Kevin] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: vicbreso@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000988320800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5549  
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Kopp, J.; Soreq, Y.; Tabrizi, Z. url  doi
openurl 
  Title (up) EFT at FASER nu Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 086 - 46pp  
  Keywords Effective Field Theories; Neutrino Physics  
  Abstract We investigate the sensitivity of the FASER nu detector to new physics in the form of non-standard neutrino interactions. FASER nu, which will be installed 480 m downstream of the ATLAS interaction point, will for the first time study interactions of multi-TeV neutrinos from a controlled source. Our formalism – which is applicable to any current and future neutrino experiment – is based on the Standard Model Effective Theory (SMEFT) and its counterpart, Weak Effective Field Theory (WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASER nu will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASER nu constraints will become comparable to existing limits – some of them derived for the first time in this paper – already with 150 fb(-1) of data.  
  Address [Falkowski, Adam] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: afalkows017@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000707348700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5002  
Permanent link to this record
 

 
Author Ankowski, A.M. et al; Alvarez-Ruso, L. url  doi
openurl 
  Title (up) Electron scattering and neutrino physics Type Journal Article
  Year 2023 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 50 Issue 12 Pages 120501 - 34pp  
  Keywords neutrino oscillation; CEvNS; PVES; electron scattering; neutrino scattering  
  Abstract A thorough understanding of neutrino-nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino-nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments-both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program-and could well be the difference between achieving or missing discovery level precision. To this end, electron-nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino-nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino-nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.  
  Address [Ankowski, A. M.; Friedland, A.; Butti, P.; Toro, N.] Stanford Univ, SLAC Natl Accelerator Lab, Menlo Pk, CA USA, Email: mahn@msu.edu;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001086874300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5748  
Permanent link to this record
 

 
Author Barenboim, G.; Rasero, J. url  doi
openurl 
  Title (up) Electroweak baryogenesis window in non standard cosmologies Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 028 - 20pp  
  Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics  
  Abstract In this work we show that the new bounds on the Higgs mass are more than difficult to reconcile with the strong constraints on the physical parameters of the Standard Model and the Minimal Supersymmetric Standard Model imposed by the preservation of the baryon asymmetry. This bound can be weakened by assuming a nonstandard cosmology at the time of the electroweak phase transition, reverting back to standard cosmology by BBN time. Two explicit examples are an early period of matter dominated expansion due to a heavy right handed neutrino (see-saw scale), or a nonstandard braneworld expansion.  
  Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000307298400028 Approved no  
  Is ISI yes International Collaboration  
  Call Number IFIC @ pastor @ Serial 1158  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva