toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Izmaylov, A.; Novella, P.; Sorel, M. url  doi
openurl 
  Title (down) Combined Analysis of Neutrino and Antineutrino Oscillations at T2K Type Journal Article
  Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 118 Issue 15 Pages 151801 - 9pp  
  Keywords  
  Abstract T2K reports its first results in the search for CP violation in neutrino oscillations using appearance and disappearance channels for neutrino-and antineutrino-mode beams. The data include all runs from January 2010 to May 2016 and comprise 7.482 x 10(20) protons on target in neutrino mode, which yielded in the far detector 32 e-like and 135 mu-like events, and 7.471 x 10(20) protons on target in antineutrino mode, which yielded 4 e-like and 66 mu-like events. Reactor measurements of sin(2) 2 theta(13) have been used as an additional constraint. The one-dimensional confidence interval at 90% for the phase delta(CP) spans the range (-3.13,-0.39) for normal mass ordering. The CP conservation hypothesis (delta(CP) = 0, pi) is excluded at 90% C.L.  
  Address [Ariga, A.; Ereditato, A.; Nirkko, M.; Pistillo, C.; Redij, A.; Wilkinson, C.] Univ Bern, LHEP, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399957800006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3104  
Permanent link to this record
 

 
Author Double Chooz collaboration (Abe, Y. et al); Novella, P. url  doi
openurl 
  Title (down) Characterization of the spontaneous light emission of the PMTs used in the Double Chooz experiment Type Journal Article
  Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 11 Issue Pages P08001 - 25pp  
  Keywords Detector design and construction technologies and materials; Neutrino detectors; Photoemission  
  Abstract During the commissioning of the first of the two detectors of the Double Chooz experiment, an unexpected and dominant background caused by the emission of light inside the optical volume has been observed. A specific study of the ensemble of phenomena called Light Noise has been carried out in-situ, and in an external laboratory, in order to characterize the signals and to identify the possible processes underlying the effect. Some mechanisms of instrumental noise originating from the PMTs were identified and it has been found that the leading one arises from the light emission localized on the photomultiplier base and produced by the combined effect of heat and high voltage across the transparent epoxy resin covering the electric components. The correlation of the rate and the amplitude of the signal with the temperature has been observed. For the first detector in operation the induced background has been mitigated using online and offline analysis selections based on timing and light pattern of the signals, while a modification of the photomultiplier assembly has been implemented for the second detector in order to blacken the PMT bases.  
  Address [Abrahao, T.; Nunokawa, H.; Wagner, S.] PUC Univ, R Marques de Sao Vicente,225 Gavea, Rio De Janeiro, RJ, Brazil, Email: roberto.santorelli@ciemat.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387860100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2869  
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Izmaylov, A.; Novella, P. url  doi
openurl 
  Title (down) Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at T2K Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 3 Pages 032003 - 46pp  
  Keywords  
  Abstract This paper reports measurements of final-state proton multiplicity, muon and proton kinematics, and their correlations in charged-current pionless neutrino interactions, measured by the T2K ND280 near detector in its plastic scintillator (C8H8) target. The data were taken between years 2010 and 2013, corresponding to approximately 6 x 10(20) protons on target. Thanks to their exploration of the proton kinematics and of imbalances between the proton and muon kinematics, the results offer a novel probe of the nuclear-medium effects most pertinent to the (sub-)GeV neutrino-nucleus interactions that are used in accelerator-based long-baseline neutrino oscillation measurements. These results are compared to many neutrino-nucleus interaction models which all fail to describe at least part of the observed phase space. In case of events without a proton above a detection threshold in the final state, a fully consistent implementation of the local Fermi gas model with multinucleon interactions gives the best description of the data. In the case of at least one proton in the final state, the spectral function model agrees well with the data, most notably when measuring the kinematic imbalance between the muon and the proton in the plane transverse to the incoming neutrino. Within the models considered, only the existence of multinucleon interactions are able to describe the extracted cross section within regions of high transverse kinematic imbalance. The effect of final-state interactions is also discussed.  
  Address [Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000441235800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3693  
Permanent link to this record
 

 
Author NEXT Collaboration (Martinez-Lema, G. et al); Palmeiro, B.; Botas, A.; Laing, A.; Renner, J.; Simon, A.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Perez, J.; Querol, M.; Rodriguez, J.; Romo-Lugue, C.; Sorel, M.; Torrent, J.; Yahlali, N. url  doi
openurl 
  Title (down) Calibration of the NEXT-White detector using Kr-83m decays Type Journal Article
  Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 13 Issue Pages P10014 - 21pp  
  Keywords Charge transport; multiplication and electroluminescence in rare gases and liquids; Gaseous imaging and tracking detectors; Time projection Chambers (TPC); Double-beta decay detectors  
  Abstract The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. It has been operating at Laboratorio Subterraneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed using Kr-83m decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event transverse position which is caused by variations in solid angle coverage both for direct and reflected light and edge effects. After producing calibration maps to correct for both effects we measure an excellent energy resolution for 41.5 keV point-like deposits of (4.553 +/- 0.010 (stat.) +/- 0.324 (sys.)) % FWHM in the full chamber and (3.804 +/- 0.013 (stat.) +/- 0.112 (sys.)) % FWHM in a restricted fiducial volume. Using naive 1/root E scaling, these values translate into resolutions of (0.5916 +/- 0.0014 (stat.) +/- 0.0421 (sys.)) % FWHM and (0.4943 +/- 0.0017 (stat.) +/- 0.0146 (sys.)) % FWHM at the Q(beta beta) energy of xenon double beta decay (2458 keV), well within range of our target value of 1%.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: gonzalo.martinez.lema@usc.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000447061800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3754  
Permanent link to this record
 

 
Author NEXT Collaboration (Simon, A. et al); Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title (down) Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 146 - 38pp  
  Keywords Dark Matter and Double Beta Decay (experiments)  
  Abstract Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of similar to 10(27) yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of <similar to> 5 when reconstructing electron-positron pairs in the Tl-208 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterraneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of similar to 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e(-)e(+) pairs, it leads to a background rejection factor of 27 at 57% signal efficiency.  
  Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA, Email: ander@post.bgu.ac.il;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000677621700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4906  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva