toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author n_TOF Collaboration (Gawlik, A. et al); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title (up) Measurement of the Ge-76(n, gamma) cross section at the n_TOF facility at CERN Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 104 Issue 4 Pages 044610 - 7pp  
  Keywords  
  Abstract The Ge-76(n, gamma) reaction has been measured at the n_TOF facility at CERN via the time-of-flight technique. Neutron capture cross sections on Ge-76 are of interest to a variety of low-background experiments, such as neutrinoless double beta decay searches, and to nuclear astrophysics. We have determined resonance capture kernels up to 52 keV neutron energy and used the new data to calculate Maxwellian-averaged neutron capture cross sections for k(B)T values of 5 to 100 keV.  
  Address [Gawlik-Ramiega, A.; Andrzejewski, J.; Perkowski, J.] Univ Lodz, Lodz, Poland, Email: aleksandra.gawlik@uni.lodz.pl  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000707420400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5003  
Permanent link to this record
 

 
Author Jordan, D.; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Gomez-Hornillos, M.B.; Caballero-Folch, R.; Cortes, G.; Cano-Ott, D.; Mendoza, E.; Bandac, I.; Bettini, A.; Fraile, L.M.; Domingo, C. doi  openurl
  Title (up) Measurement of the neutron background at the Canfranc Underground Laboratory LSC Type Journal Article
  Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 42 Issue Pages 1-6  
  Keywords Neutron background; Underground physics; He-3 proportional counters  
  Abstract The energy distribution of the neutron background was measured for the first time at Hall A of the Canfranc Underground Laboratory. For this purpose we used a novel approach based on the combination of the information obtained with six large high-pressure He-3 proportional counters embedded in individual polyethylene blocks of different size. In this way not only the integral value but also the flux distribution as a function of neutron energy was determined in the range from 1 eV to 10 MeV. This information is of importance because different underground experiments show different neutron background energy dependence. The high sensitivity of the setup allowed to measure a neutron flux level which is about four orders of magnitude smaller that the neutron background at sea level. The integral value obtained is Phi(Hall A) = (3.44 +/- 0.35) x 10(-6) cm(-2) s(-1).  
  Address [Jordan, D.; Tain, J. L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: jordan@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315371900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1351  
Permanent link to this record
 

 
Author n_TOF Collaboration (Michalopoulou, V. et al); Babiano-Suarez, V.; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L. doi  openurl
  Title (up) Measurement of the neutron-induced fission cross section of Th-230 at the CERN n_TOF facility Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 108 Issue 1 Pages 014616 - 15pp  
  Keywords  
  Abstract The neutron-induced fission cross section of Th-230 has been measured at the neutron time-of-flight facility n_TOF located at CERN. The experiment was performed at the experimental area EAR-1 with a neutron flight path of 185 m, using Micromegas detectors for the detection of the fission fragments. The Th-230(n, f ) cross section was determined relative to the U-235(n, f ) one, covering the energy range from the fission threshold up to 400 MeV. The results from the present work are compared with existing cross-section datasets and the observed discrepancies are discussed and analyzed. Finally, using the code EMPIRE 3.2.3 a theoretical study, based on the statistical model, was performed leading to a satisfactory reproduction of the experimental results with the proper tuning of the respective parameters, while for incident neutron energy beyond 200 MeV the fission of( 230)Th was described by Monte Carlo simulations.  
  Address [Michalopoulou, V; Stamatopoulos, A.; Diakaki, M.; Vlastou, R.; Kokkoris, M.; Tassan-Got, L.] Natl Tech Univ Athens, Dept Phys, Zografou Campus, Athens, Greece, Email: veatriki.michalopoulou@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063908000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5700  
Permanent link to this record
 

 
Author n_TOF Collaboration (Belloni, F. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (up) Measurement of the neutron-induced fission cross-section of Am-241 at the time-of-flight facility n_TOF Type Journal Article
  Year 2013 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 49 Issue 1 Pages 2 - 6pp  
  Keywords  
  Abstract The neutron-induced fission cross-section of Am-241 has been measured relative to the standard fission cross-section of U-235 between 0.5 and 20 MeV. The experiment was performed at the CERN nTOF facility. Fission fragments were detected by a fast ionization chamber by discriminating against the alpha-particles from the high radioactivity of the samples. The high instantaneous neutron flux and the low background of the nTOF facility enabled us to obtain uncertainties of approximate to 5%. With the present results it was possible to resolve discrepancies between previous data sets and to confirm current evaluations, thus providing important information for design studies of future reactors with improved fuel burn-up.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315048100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1399  
Permanent link to this record
 

 
Author n_TOF Collaboration (Belloni, F. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (up) Measurement of the neutron-induced fission cross-section of Am-243 relative to U-235 from 0.5 to 20 MeV Type Journal Article
  Year 2011 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 47 Issue 12 Pages 160 - 8pp  
  Keywords  
  Abstract The ratio of the neutron-induced fission cross-sections of Am-243 and U-235 was measured in the energy range from 0.5 to 20 MeV with uncertainties of approximate to 4%. The experiment was performed at the CERN n_TOF facility using a fast ionization chamber. With the good counting statistics that could be achieved thanks to the high instantaneous flux and the low backgrounds, the present results are useful for resolving discrepancies in previous data sets and are important for future reactors with improved fuel burn-up.  
  Address [Belloni, F.; Calviani, M.; Mastinu, P.; Milazzo, P. M.; Abbondanno, U.; Fujii, K.; Gramegna, F.; Moreau, C.] Ist Nazl Fis Nucl INFN, Lab Nazl Legnaro, Trieste, Italy, Email: paolo.milazzo@ts.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300285100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 904  
Permanent link to this record
 

 
Author n_TOF Collaboration (Wright, T. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title (up) Measurement of the prompt fission γ-rays from slow neutron-induced fission of 235U with STEFF Type Journal Article
  Year 2024 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 60 Issue 3 Pages 70 - 11pp  
  Keywords  
  Abstract The amount of energy carried by gamma-rays during the fission process is an important consideration when developing new reactor designs. Many studies of gamma-ray energy and multiplicity, from a multitude of fissioning systems, were measured during the 1970s. However the data from such experiments largely underestimates the heating effect caused by gamma-rays in the structure of a reactor. It is therefore essential to obtain more accurate measurements of the energy carried during gamma-ray emission. As such, the OECD Nuclear Energy Agency has put out a high priority request [1] for measurements of the mean gamma-ray energy and multiplicity to an accuracy better than 7.5 percent from several fissioning systems; including U-235(n(thermal)). Measurements of the rays from these fissioning nuclei were performed with the SpecTrometer for Exotic Fission Fagments (STEFF).  
  Address [Wright, T.; Smith, A. G.; Bennett, S. A.; Ryan, J. A.; Sekhar, A.; Warren, S.; Billowes, J.; Chiaveri, E.; Sabate-Gilarte, M.] Univ Manchester, Manchester, England, Email: tobias.wright@manchester.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001190743600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6028  
Permanent link to this record
 

 
Author n_TOF Collaboration (Amaducci, S. et al); Domingo-Pardo, C.; Tain, J.L. url  doi
openurl 
  Title (up) Measurement of the U-235(n, f) cross section relative to the Li-6(n, t) and B-10(n,alpha) standards from thermal to 170 keV neutron energy range at n_TOF Type Journal Article
  Year 2019 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 55 Issue 7 Pages 120 - 19pp  
  Keywords  
  Abstract .The U-235(n, f ) cross section was measured at n_TOF relative to Li-6(n, t) and B-10(n,alpha) , with high resolution ( L=183.49(2) m) and in a wide energy range (25meV-170keV) with 1.5% systematic uncertainty, making use of a stack of six samples and six silicon detectors placed in the neutron beam. This allowed us to make a direct comparison of the yields of the U-235(n, f ) and of the two reference reactions under the same experimental conditions, and taking into account the forward/backward emission asymmetry. A hint of an anomaly in the 10-30keV neutron energy range had been previously observed in other experiments, indicating a cross section systematically lower by several percent relative to major evaluations. The present results indicate that the cross section in the 9-18keV neutron energy range is indeed overestimated by almost 5% in the recently released evaluated data files ENDF/B-VIII.0 and JEFF3.3, as a consequence of a 7% overestimate in a single GMA node in the IAEA reference file. Furthermore, these new high-resolution data confirm the existence of resonance-like structures in the keV neutron energy region. The results here reported may lead to a reduction of the uncertainty in the 1-100keV neutron energy region. Finally, from the present data, a value of 249.7 +/- 1.4( stat )+/- 0.94( syst ) b<bold>eV has been extracted for the cross section integral between </bold>7.8 and 11eV, confirming the value of 247.5 +/- 3 b<bold>eV recently established as a standard</bold>.  
  Address [Amaducci, S.; Cosentino, L.; Finocchiaro, P.; Musumarra, A.] INFN, Lab Nazl Sud, Catania, Italy, Email: finocchiaro@lns.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000477050900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4083  
Permanent link to this record
 

 
Author n_TOF Collaboration (Wright, T. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title (up) Measurement of the U-238(n,gamma) cross section up to 80 keV with the Total Absorption Calorimeter at the CERN n_TOF facility Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 96 Issue 6 Pages 064601 - 11pp  
  Keywords  
  Abstract The radiative capture cross section of a highly pure (99.999%), 6.125(2) grams and 9.56(5) x 10(-4) atoms/barn areal density U-238 sample has been measured with the Total Absorption Calorimeter (TAC) in the 185 m flight path at the CERN neutron time-of-flight facility n_TOF. This measurement is in response to the NEA High Priority Request list, which demands an accuracy in this cross section of less than 3% below 25 keV. These data have undergone careful background subtraction, with special care being given to the background originating from neutrons scattered by the 238U sample. Pileup and dead-time effects have been corrected for. The measured cross section covers an energy range between 0.2 eV and 80 keV, with an accuracy that varies with neutron energy, being better than 4% below 25 keV and reaching at most 6% at higher energies.  
  Address [Wright, T.; Billowes, J.; Ryan, J. A.; Ware, T.] Univ Manchester, Manchester, Lancs, England, Email: tobias.wright@manchester.ac.uk  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416848700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3392  
Permanent link to this record
 

 
Author Kiss, G.G. et al; Tarifeño-Saldivia, A.; Tain, J.L.; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Morales, A.I.; Nacher, E.; Rubio, B.; Tolosa, A. doi  openurl
  Title (up) Measuring the beta-decay Properties of Neutron-rich Exotic Pm, Sm, Eu, and Gd Isotopes to Constrain the Nucleosynthesis Yields in the Rare-earth Region Type Journal Article
  Year 2022 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 936 Issue 2 Pages 107 - 18pp  
  Keywords  
  Abstract The beta-delayed neutron-emission probabilities of 28 exotic neutron-rich isotopes of Pm, Sm, Eu, and Gd were measured for the first time at RIKEN Nishina Center using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The existing beta-decay half-life (T (1/2)) database was significantly increased toward more neutron-rich isotopes, and uncertainties for previously measured values were decreased. The new data not only constrain the theoretical predictions of half-lives and beta-delayed neutron-emission probabilities, but also allow for probing the mechanisms of formation of the high-mass wing of the rare-earth peak located at A approximate to 160 in the r-process abundance distribution through astrophysical reaction network calculations. An uncertainty quantification of the calculated abundance patterns with the new data shows a reduction of the uncertainty in the rare-earth peak region. The newly introduced variance-based sensitivity analysis method offers valuable insight into the influence of important nuclear physics inputs on the calculated abundance patterns. The analysis has identified the half-lives of Sm-168 and of several gadolinium isotopes as some of the key variables among the current experimental data to understand the remaining abundance uncertainty at A = 167-172.  
  Address [Kiss, G. G.; Vitez-Sveiczer, A.; Algora, A.; Szegedi, T. N.] Inst Nucl Res ATOMKI, Bem Ter 18-c, H-4026 Debrecen, Hungary, Email: ggkiss@atomki.hu;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000850804600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5353  
Permanent link to this record
 

 
Author Martinez, T. et al; Agramunt, J.; Algora, A.; Domingo-Pardo, C.; Jordan, M.D.; Rubio, B.; Tain, J.L. doi  openurl
  Title (up) MONSTER: a TOF Spectrometer for beta-delayed Neutron Spectroscopy Type Journal Article
  Year 2014 Publication Nuclear Data Sheets Abbreviated Journal Nucl. Data Sheets  
  Volume 120 Issue Pages 78-80  
  Keywords  
  Abstract beta-delayed neutron (DN) data, including emission probabilities, P-n, and energy spectrum, play an important role in our understanding of nuclear structure, nuclear astrophysics and nuclear technologies. A MOdular Neutron time-of-flight SpectromeTER (MONSTER) is being built for the measurement of the neutron energy spectra and branching ratios. The TOF spectrometer will consist of one hundred liquid scintillator cells covering a significant solid angle. The MONSTER design has been optimized by using Monte Carlo (MC) techniques. The response function of the MONSTER cell has been characterized with mono-energetic neutron beams and compared to dedicated MC simulations.  
  Address [Martinez, T.; Cano-Ott, D.; Castilla, J.; Garcia, A. R.; Marin, J.; Martinez, G.; Mendoza, E.; Santos, C.; Tera, F. J.; Villamarin, D.] CIEMAT, Ctr Invest Energet, Medio Ambient Tecnol, E-28040 Madrid, Spain, Email: trino.martinez@ciemat.es  
  Corporate Author Thesis  
  Publisher Academic Press Inc Elsevier Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0090-3752 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339860100021 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1872  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva