Nunes da Silva, T., Chinellato, D. D., Giannini, A. V., Takahashi, J., Ferreira, M. N., Denicol, G. S., et al. (2023). Prehydrodynamic evolution in large and small systems. Phys. Rev. C, 107(4), 044901–12pp.
Abstract: We extend our previous investigation of the effects of prehydrodynamic evolution on final-state observables in heavy-ion collisions [38] to smaller systems. We use a state-of-the-art hybrid model for the numerical simulations with optimal parameters obtained from a previous Bayesian study. By studying p-Pb collisions, we find that the effects due to the assumption of a conformal evolution in the prehydrodynamical stage are even more important in small systems. We also show that this effect depends on the time duration of the pre-equilibrium stage, which is further enhanced in small systems. Finally, we show that the recent proposal of a free-streaming with subluminal velocity for the pre-equilibrium stage, thus effectively breaking conformal invariance, can alleviate the contamination of final-state observables. Our study further reinforces the need for moving beyond conformal approaches in pre-equilibrium dynamics modeling, especially when extracting transport coefficients from hybrid models in the high-precision era of heavy-ion collisions.
|
Stahl, C. et al., & Gadea, A. (2015). Population of the 2(ms)(+) mixed-symmetry state of Ba-140 with the alpha-transfer reaction. Phys. Rev. C, 92(4), 044324–7pp.
Abstract: Background: Identification of proton-neutron mixed-symmetric one-quadrupole phonon excitations (the 2(ms)(+) states) of atomic nuclei provides information on the isovector part of the residual nucleon-nucleon interaction. It was predicted that the 2(ms)(+) state of particular nuclei close to the U(5) limit of the interacting boson model, in particular Ba-140, should be considerably populated by alpha-transfer reactions [C. E. Alonso et al., Phys. Rev. C 78, 017301 (2008)]. Purpose: We aim at the identification of the 2(ms)(+) mixed-symmetry state (MSS) of radioactive Ba-140 and investigate its population by the alpha-transfer reaction as a suitable tool to selectively populate MSSs and as a potential new signature for its mixed-symmetric character. Method: A gamma-ray spectroscopy experiment was performed in inverse kinematics in order to populate the 2(ms)(+) state of Ba-140 by alpha-transfer from a C-nat target on Xe-136 beam ions. The population of the candidate for the 2(ms)(+) state of Ba-140 was measured relative to the population of the 2(1)(+) state. Results: The candidate for the 2(ms)(+) state of Ba-140 was populated by a transfer three times weaker than predicted. Another 2(+) state that can be ruled out as the MSS was in turn as strongly populated by the a transfer as predicted for the MSS. Conclusions: The relative population of 2(+) states by alpha-transfer cannot serve as a new signature for MSSs, since other 2(+) states are also strongly populated. Nevertheless, the substantial population of the MSS candidate of Ba-140 by alpha transfer qualifies this type of reaction as suitable tool to excite MSSs and study their electromagnetic decay properties.
|
Colovic, P. et al, & Jurado-Gomez, M. L. (2020). Population of lead isotopes in binary reactions using a Rb-94 radioactive beam. Phys. Rev. C, 102(5), 054609–8pp.
Abstract: We measured absolute cross sections for neutron transfer channels populated in the Rb-94 + Pb-208 binary reaction. Cross sections have been extracted identifying directly the lead isotopes with the high efficiency MINIBALL gamma-ray array coupled to a particle detector combined with a radioactive Rb-94 beam delivered at E-lab = 6.2 MeV/nucleon by the HIE-ISOLDE facility. We observed sizable cross sections in the neutron-rich mass region, where the heavy partner acquires neutrons. A fair agreement between the measured cross sections with those from GRAZING calculations gives confidence in the cross-section predictions of more neutron-rich nuclei produced via a larger number of transferred nucleons.
|
Sobczyk, J. E., Rocco, N., & Nieves, J. (2019). Polarization of tau in quasielastic (anti)neutrino scattering: The role of spectral functions. Phys. Rev. C, 100(3), 035501–14pp.
Abstract: We present a study of the tau polarization in charged-current quasielastic (anti)neutrino-nucleus scattering. The spectral function formalism is used to compute the differential cross section and the polarization components for several kinematical setups, relevant for neutrino-oscillation experiments. The effects of the nuclear corrections in these observables are investigated by comparing the results obtained using two different realistic spectral functions, with those deduced from the relativistic global Fermi gas model, where only statistical correlations are accounted for. We show that the spectral functions, although they play an important role when predicting the differential cross sections, produce much less visible effects on the polarization components of the outgoing tau.
|
Xie, J. J., Martinez Torres, A., Oset, E., & Gonzalez, P. (2011). Plausible explanation for the Delta(5/2)+(2000) puzzle. Phys. Rev. C, 83(5), 055204–11pp.
Abstract: From a Faddeev calculation for the pi-(Delta rho)(N5/2)-(1675) system we show the plausible existence of three dynamically generated I (J(P)) = 3/2(5/2(+)) baryon states below 2.3 GeV, whereas only two resonances, Delta(5/2)+ (1905)( ) and Delta(5/2)+(2000)(**), are cataloged in the Particle Data Book Review. Our results give theoretical support to data analyses extracting two distinctive resonances, Lambda(5/2)+(similar to 1740) and Lambda(5/2)+(similar to 2200), from which the mass of Delta(5/2)+ (2000) is estimated. We propose that these two resonances should be cataloged instead of Delta(5/2)+(2000). This proposal gets further support from the possible assignment of the other baryon states found in the approach in the I = 1/2, 3/2 with J(P) = 1/2(+), 3/2(+), 5/(2)+ sectors to known baryonic resonances. In particular, Delta(1/2)+(1750)(*) is naturally interpreted as a pi N-1/2-(1650) bound state.
|