Ternes, C. A., Gariazzo, S., Hajjar, R., Mena, O., Sorel, M., & Tortola, M. (2019). Neutrino mass ordering at DUNE: An extra nu bonus. Phys. Rev. D, 100(9), 093004–10pp.
Abstract: We study the possibility of extracting the neutrino mass ordering at the future Deep Underground Neutrino Experiment using atmospheric neutrinos, which will be available before the muon neutrino beam starts being operational. The large statistics of the atmospheric muon neutrino and antineutrino samples at the far detector, together with the baselines of thousands of kilometers that these atmospheric (anti) neutrinos travel, provide ideal ingredients to extract the neutrino mass ordering via matter effects in the neutrino propagation through Earth. Crucially, muon capture by argon provides excellent charge tagging, allowing us to disentangle the neutrino and antineutrino signature. This is an important extra benefit of having a liquid argon time projection chamber as a far detector, that could render an similar to 3.5 sigma extraction of the mass ordering after approximately 7 yr of exposure.
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Izmaylov, A., Sorel, M., & Stamoulis, P. (2015). Neutrino oscillation physics potential of the T2K experiment. Prog. Theor. Exp. Phys., (4), 043C01–36pp.
Abstract: The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle theta(13) have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal sin(2) 2 theta(23), the octant of theta(23), and the mass hierarchy, in addition to the measurements of delta CP, sin(2) theta(23), and Delta m(32)(2), for various combinations of nu-mode and (nu) over bar -mode data-taking. With an exposure of 7.8 x 10(21) protons-on-target, T2K can achieve 1 sigma resolution of 0.050 (0.054) on sin(2) theta(23) and 0.040 (0.045) x 10(-3) eV(2) on Delta m(32)(2) for 100% (50%) neutrino beam mode running assuming sin(2) theta(23) = 0.5 and Delta m(32)(2) = 2.4 x 10(-3) eV(2). T2K will have sensitivity to the CP-violating phase delta(CP) at 90% C.L. or better over a significant range. For example, if sin(2) 2 theta(23) is maximal (i.e.theta(23) = 45 degrees) the range is -115 degrees < delta(CP) < -60 degrees for normal hierarchy and +50 degrees < delta(CP) < + 130 degrees for inverted hierarchy. When T2K data is combined with data from the NO nu A experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero delta CP is substantially increased compared to if each experiment is analyzed alone.
|
De Romeri, V., Fernandez-Martinez, E., & Sorel, M. (2016). Neutrino oscillations at DUNE with improved energy reconstruction. J. High Energy Phys., 09(9), 030–25pp.
Abstract: We study the physics reach of the long-baseline oscillation analysis of the DUNE experiment when realistic simulations are used to estimate its neutrino energy reconstruction capabilities. Our studies indicate that significant improvements in energy resolution compared to what is customarily assumed are plausible. This improved energy resolution can increase the sensitivity to leptonic CP violation in two ways. On the one hand, the CP-violating term in the oscillation probability has a characteristic energy dependence that can be better reproduced. On the other hand, the second oscillation maximum, especially sensitive to delta(CP), is better reconstructed. These effects lead to a significant improvement in the fraction of values of delta(CP) for which a 5 sigma discovery of leptonic CP-violation would be possible. The precision of the delta(CP) measurement could also be greatly enhanced, with a reduction of the maximum uncertainties from 26 degrees to 18 degrees for a 300 MW.kt.yr exposure. We therefore believe that this potential gain in physics reach merits further investigations of the detector performance achievable in DUNE.
|
NEXT Collaboration(Alvarez, V. et al), Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., Gil, A., et al. (2012). NEXT-100 Technical Design Report (TDR). Executive summary. J. Instrum., 7, T06001–34pp.
Abstract: In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (beta beta 0v) in Xe-136 at the Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout plane performing the energy measurement is composed of Hamamatsu R11410-10 photomultipliers, specially designed for operation in low-background, xenon-based detectors. Each individual PMT will be isolated from the gas by an individual, pressure resistant enclosure and will be coupled to the sensitive volume through a sapphire window. The tracking plane consists in an array of Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged in square boards holding 64 sensors (8 x 8) with a 1-cm pitch. The inner walls of the TPC, the sapphire windows and the boards holding the MPPCs will be coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the light collection.
|
NEXT Collaboration(Byrnes, N. K. et al), Carcel, S., Carrion, J. V., Lopez, F., Lopez-March, N., Martin-Albo, J., et al. (2023). NEXT-CRAB-0: a high pressure gaseous xenon time projection chamber with a direct VUV camera based readout. J. Instrum., 18(8), P08006–33pp.
Abstract: The search for neutrinoless double beta decay (0νββ) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to 0νββ searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton-and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium. Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in 0νββ.
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Gomez-Cadenas, J. J., Izmaylov, A., Monfregola, L., et al. (2014). Observation of Electron Neutrino Appearance in a Muon Neutrino Beam. Phys. Rev. Lett., 112(6), 061802–8pp.
Abstract: The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced 295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron neutrino events were detected with an energy distribution consistent with an appearance signal, corresponding to a significance of 7.3 sigma when compared to 4.92 +/- 0.55 expected background events. In the Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on several parameters including three mixing angles theta(12), theta(23), theta(13), a mass difference vertical bar Delta m(32)(2)vertical bar and a CP violating phase delta(CP). In this neutrino oscillation scenario, assuming vertical bar Delta m(32)(2)vertical bar = 2.4 x 10(-3) eV(2), sin theta(2)(23) = 0.5, and vertical bar Delta m(32)(2)vertical bar > 0 (vertical bar Delta m(32)(2)vertical bar < 0), a best- fit value of sin2 theta(2)(13) = 0.140(- 0.032)(+0.038) (0.170(-0.037)(+0.045)) is obtained at delta(CP) = 0. When combining the result with the current best knowledge of oscillation parameters including the world average value of theta(13) from reactor experiments, some values of delta(CP) are disfavored at the 90% C. L.
|
NEXT Collaboration(Alvarez, V. et al), Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., Gil, A., et al. (2013). Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array. J. Instrum., 8, P09011–20pp.
Abstract: NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and “blob” regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Q(beta beta)).
|
DUNE Collaboration(Abud, A. A. et al), Amar Es-Sghir, H., Amedo, P., Antonova, M., Barenboim, G., Benitez Montiel, C., et al. (2024). Performance of a modular ton-scale pixel-readout liquid argon time projection chamber. Instruments, 8, 41–45pp.
Abstract: The Module-0 Demonstrator is a single-phase 600 kg liquid argon time projection chamber operated as a prototype for the DUNE liquid argon near detector. Based on the ArgonCube design concept, Module-0 features a novel 80k-channel pixelated charge readout and advanced high-coverage photon detection system. In this paper, we present an analysis of an eight-day data set consisting of 25 million cosmic ray events collected in the spring of 2021. We use this sample to demonstrate the imaging performance of the charge and light readout systems as well as the signal correlations between the two. We also report argon purity and detector uniformity measurements and provide comparisons to detector simulations.
|
T2K Collaboration(Abe, K. et al), Cervera-Villanueva, A., Escudero, L., Izmaylov, A., Monfregola, L., Sorel, M., et al. (2014). Precise Measurement of the Neutrino Mixing Parameter theta(23) from Muon Neutrino Disappearance in an Off-Axis Beam. Phys. Rev. Lett., 112(18), 181801–8pp.
Abstract: New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter theta(23). Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57 x 10(20) protons on target, T2K has fit the energy-dependent nu(mu) oscillation probability to determine oscillation parameters. The 68% confidence limit on sin(2)(theta(23)) is 0.514(-0.056)(+0.055) (0.511 +/- 0.055), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Delta m(32)(2) = (2.51 +/- 0.10) x 10(-3) eV(2)/c(4) (inverted hierarchy: Delta m(13)(2) = (2.48 +/- 0.10) x 10(-3) eV(2)/c(4)). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.
|
NEXT Collaboration(Gomez-Cadenas, J. J. et al), Alvarez, V., Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., et al. (2014). Present Status and Future Perspectives of the NEXT Experiment. Adv. High. Energy Phys., 2014, 907067–22pp.
Abstract: NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the Xe-136 isotope. It is under construction in the Laboratorio Subterraneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment.
|