|   | 
Details
   web
Records
Author n_TOF Collaboration (Calviani, M. et al); Domingo-Pardo, C.; Tain, J.L.
Title (up) Fission Cross-section Measurements of (233)U, (245)Cm and (241,243)Am at CERN n_TOF Facility Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 1912-1915
Keywords ND2010; Nuclear data; ENDF; n_TOF; Neutron-induced fission reactions; Am; Cm; U
Abstract Neutron-induced fission cross-sections of minor actinides have been measured using the nTOF white neutron source at CERN. Geneva, as part of a large experimental program aiming at collecting new data relevant for nuclear astrophysics and for the design of advanced reactor systems. The measurements at nTOF take advantage of the innovative features of the n_TOF facility, namely the wide energy range, high instantaneous neutron flux and good energy resolution. Final results on the fission cross-section of (233)U, (245)cm and (243)Am from thermal to 20 MeV are here reported, together with preliminary results for (241)Am. The measurement have been performed with a dedicated Fast Ionization Chamber (FIC), a fission fragment detector with a very high efficiency, relative to the very well known cross-section of (235)U, measured simultaneously with the same detector.
Address [Calviani, M; Andriamonje, S; Chiaveri, E; Vlachoudis, V] CERN, Geneva, Switzerland, Email: marco.calviani@cern.ch
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700111 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 741
Permanent link to this record
 

 
Author Heinze, M.; Malinsky, M.
Title (up) Flavor structure of supersymmetric SO(10) GUTs with extended matter sector Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 3 Pages 035018 - 16pp
Keywords
Abstract We discuss in detail the flavor structure of the supersymmetric SOd(10) grand unified models with the three traditional 16-dimensional matter spinors mixed with a set of extra ten-dimensional vector multiplets which can provide the desired sensitivity of the standard model matter spectrum to the grand unified theory symmetry breakdown at the renormalizable level. We put the qualitative argument that a successful fit of the quark and lepton data requires an active participation of more than a single vector matter multiplet on a firm, quantitative ground. We find that the strict no-go obtained for the fits of the charged-sector observables in case of a single active matter 10 is relaxed if a second vector multiplet is added to the matter sector and excellent, though nontrivial, fits can be devised. Exploiting the unique calculable part of the neutrino mass matrix governed by the SUd(2)(L) triplet in the 54-dimensional Higgs multiplet, a pair of genuine predictions of the current setting is identified: a nonzero value of the leptonic 1-3 mixing close to the current 90% C.L. limit and a small leptonic Dirac CP phase are strongly preferred by all solutions with the global-fit chi(2) values below 50.
Address [Heinze, Martin; Malinsky, Michal] AlbaNova Univ Ctr, Royal Inst Technol KTH, Dept Theoret Phys, Sch Engn Sci, SE-10691 Stockholm, Sweden, Email: mheinze@kth.se
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000287655300010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 566
Permanent link to this record
 

 
Author Ikeno, N.; Yamagata-Sekihara, J.; Nagahiro, H.; Jido, D.; Hirenzaki, S.
Title (up) Formation of heavy-meson bound states by two-nucleon pick-up reactions Type Journal Article
Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 84 Issue 5 Pages 054609 - 7pp
Keywords
Abstract We develop a model to evaluate the formation rate of the heavy mesic nuclei in two-nucleon pick-up reactions and apply it to the (6)Li target cases for the formation of heavy meson-alpha bound states, as examples. The existence of the quasideuteron in the target nucleus is assumed in this model. It is found that mesic nuclei formation in recoilless kinematics is possible even for heavier mesons than the nucleon in two-nucleon pick-up reactions. We find the formation rate of the meson-alpha bound states can be around half of the elementary cross sections at the recoilless kinematics with small distortions.
Address [Ikeno, N; Nagahiro, H; Hirenzaki, S] Nara Womans Univ, Dept Phys, Nara 6308506, Japan
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000296881200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 798
Permanent link to this record
 

 
Author Meloni, D.; Morisi, S.; Peinado, E.
Title (up) Fritzsch neutrino mass matrix from S-3 symmetry Type Journal Article
Year 2011 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 38 Issue 1 Pages 015003 - 10pp
Keywords
Abstract We present an extension of the standard model (SM) based on the discrete flavor symmetry S-3 which gives a neutrino mass matrix with two-zero texture of Fritzsch type and nearly diagonal charged lepton mass matrix. The model is compatible with the normal hierarchy only and predicts sin(2) theta(13) approximate to 0.01 at the best-fit values of solar and atmospheric parameters and maximal leptonic CP violation.
Address [Meloni, D.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: Davide.Meloni@physik.uni-wuerzburg.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes ISI:000286223700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 573
Permanent link to this record
 

 
Author Calabrese, E.; de Putter, R.; Huterer, D.; Linder, E.V.; Melchiorri, A.
Title (up) Future CMB constraints on early, cold, or stressed dark energy Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 2 Pages 023011 - 11pp
Keywords
Abstract We investigate future constraints on early dark energy (EDE) achievable by the Planck and CMBPol experiments, including cosmic microwave background (CMB) lensing. For the dark energy, we include the possibility of clustering through a sound speed c(s)(2) < 1 (cold dark energy) and anisotropic stresses parametrized with a viscosity parameter c(vis)(2). We discuss the degeneracies between cosmological parameters and EDE parameters. In particular we show that the presence of anisotropic stresses in EDE models can substantially undermine the determination of the EDE sound speed parameter c(s)(2). The constraints on EDE primordial energy density are however unaffected. We also calculate the future CMB constraints on neutrino masses and find that they are weakened by a factor of 2 when allowing for the presence of EDE, and highly biased if it is incorrectly ignored.
Address [Calabrese, Erminia; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286803300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 563
Permanent link to this record