|   | 
Details
   web
Records
Author Malabarba, B.B.; Khemchandani, K.P.; Martinez Torres, A.; Oset, E.
Title (up) D1(2420) and its interactions with a kaon: Open charm states with strangeness Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 3 Pages 036016 - 12pp
Keywords
Abstract In this work we present an attempt to describe the X1(2900) found by the LHCb collaboration, in the experimental data on the invariant mass spectrum of D-K+, as a three-meson molecular state of the KpD over line system. We discuss that the interactions in all the subsystems are attractive in nature, with the pD over line interaction generating over line D1(2420) and the Kp resonating as K1(1270). We find that the system can form a three-body state but with a mass higher than that of X1(2900). We investigate the KpD system too, finding that the three-body dynamics generates an isoscalar state, which can be related to D*s1(2860), and an exotic isovector state. This latter state has a mass similar to that of the X0(2900) and X1(2900) states found by LHCb, but a very small width (similar to 7.4 +/- 0.9 MeV) and necessarily requires more than two quarks to describe its properties. We hope that our findings will encourage experimental investigations of the isovector KpD state. Finally, in the pursuit of finding a description for X1(2900), we study the K over line K*D* system where over line K*D* forms 0+, 1+, and 2+ states. We do not find a state that can be associated with X1(2900).
Address [Malabarba, Brenda B.; Torres, A. Martinez] Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil, Email: brenda@if.usp.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000989327600013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5562
Permanent link to this record
 

 
Author De Romeri, V.; Nava, J.; Puerta, M.; Vicente, A.
Title (up) Dark matter in the scotogenic model with spontaneous lepton number violation Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 107 Issue 9 Pages 095019 - 11pp
Keywords
Abstract Scotogenic models constitute an appealing solution to the generation of neutrino masses and to the dark matter mystery. In this work we consider a version of the scotogenic model that breaks the lepton number spontaneously. At this scope, we extend the particle content of the scotogenic model with an additional singlet scalar which acquires a nonzero vacuum expectation value and breaks a global lepton number symmetry. As a consequence, a massless Goldstone boson, the majoron, appears in the particle spectrum. We discuss how the presence of the majoron modifies the phenomenology, both in flavor and dark matter observables. We focus on the fermionic dark matter candidate and analyze its relic abundance and prospects for both direct and indirect detection.
Address [De Romeri, Valentina; Nava, Jacopo; Puerta, Miguel; Vicente, Avelino] CSIC Univ Valencia, Inst Fis Corpuscular, Paterna 46980, Spain, Email: deromeri@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000995117000002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5536
Permanent link to this record
 

 
Author Câmara, H.B.; Joaquim, F.R.; Valle, J.W.F.
Title (up) Dark-sector seeded solution to the strong CP problem Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 9 Pages 095003 - 6pp
Keywords
Abstract We propose a novel realization of the Nelson-Barr mechanism “seeded” by a dark sector containing scalars and vectorlike quarks. Charge parity (CP) and a Z8 symmetry are spontaneously broken by the complex vacuum expectation value of a singlet scalar, leaving a residual Z2 symmetry that stabilizes dark matter (DM). A complex Cabibbo-Kobayashi-Maskawa matrix arises via one-loop corrections to the quark mass matrix mediated by the dark sector. In contrast with other proposals where nonzero contributions to the strong CP phase arise at the one-loop level, in our case this occurs only at two loops, enhancing naturalness. Our scenario also provides a viable weakly interacting massive particle scalar DM candidate.
Address [Camara, H. B.; Joaquim, F. R.] Univ Tecn Lisboa, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: henrique.b.camara@tecnico.ulisboa.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001115232100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5840
Permanent link to this record
 

 
Author NEXT Collaboration (Novella, P. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title (up) Demonstration of neutrinoless double beta decay searches in gaseous xenon with NEXT Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 190 - 35pp
Keywords Dark Matter and Double Beta Decay (experiments); Rare Decay
Abstract The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in Xe-136, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterr & aacute;neo de Canfranc. Achieving an energy resolution of 1% FWHM at 2.6 MeV and further background rejection by means of the topology of the reconstructed tracks, NEXT-White has been exploited beyond its original goals in order to perform a neu-trinoless double beta decay search. The analysis considers the combination of 271.6 days of Xe-136-enriched data and 208.9 days of 136Xe-depleted data. A detailed background mod-eling and measurement has been developed, ensuring the time stability of the radiogenic and cosmogenic contributions across both data samples. Limits to the neutrinoless mode are obtained in two alternative analyses: a background-model-dependent approach and a novel direct background-subtraction technique, offering results with small dependence on the background model assumptions. With a fiducial mass of only 3.50 +/- 0.01 kg of Xe-136-enriched xenon, 90% C.L. lower limits to the neutrinoless double beta decay are found in the T-1/2(0 nu) > 5.5x10(23) -1.3x10(24) yr range, depending on the method. The presented techniques stand as a pro of-of-concept for the searches to be implemented with larger NEXT detectors.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA, Email: pau.novella@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001085073500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5798
Permanent link to this record
 

 
Author CALICE Collaboration (White, A. et al); Irles, A.
Title (up) Design, construction and commissioning of a technological prototype of a highly granular SiPM-on-tile scintillator-steel hadronic calorimeter Type Journal Article
Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 18 Issue 11 Pages P11018 - 39pp
Keywords Calorimeters; Detector alignment and calibration methods (lasers, sources, par ticle- beams); Detector design and construction technologies and materials
Abstract The CALICE collaboration is developing highly granular electromagnetic and hadronic calorimeters for detectors at future energy frontier electron-positron colliders. After successful tests of a physics prototype, a technological prototype of the Analog Hadron Calorimeter has been built, based on a design and construction techniques scalable to a collider detector. The prototype consists of a steel absorber structure and active layers of small scintillator tiles that are individually read out by directly coupled SiPMs. Each layer has an active area of 72 x 72 cm2 and a tile size of 3 x 3 cm2. With 38 active layers, the prototype has nearly 22, 000 readout channels, and its total thickness amounts to 4.4 nuclear interaction lengths. The dedicated readout electronics provide time stamping of each hit with an expected resolution of about 1 ns. The prototype was constructed in 2017 and commissioned in beam tests at DESY. It recorded muons, hadron showers and electron showers at different energies in test beams at CERN in 2018. In this paper, the design of the prototype, its construction and commissioning are described. The methods used to calibrate the detector are detailed, and the performance achieved in terms of uniformity and stability is presented.
Address [White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:001127235400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5874
Permanent link to this record