|   | 
Details
   web
Records
Author Beltran-Palau, P.; Navarro-Salas, J.; Pla, S.
Title (up) Adiabatic regularization for Dirac fields in time-varying electric backgrounds Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 10 Pages 105014 - 15pp
Keywords
Abstract The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the electric current induced by quantized scalar fields in a time-varying electric background. This can be done in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one. Assuming this, we further extend the method to deal with Dirac fields in four space-time dimensions. This requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent electric field, which is different from the conventional expansion used for scalar fields. Our proposal is consistent, in the massless limit, with the conformal anomaly. We also provide evidence that our proposed adiabatic expansion for the fermionic modes parallels the Schwinger-DeWitt adiabatic expansion of the two-point function. We give the renormalized expression of the electric current and analyze, using numerical and analytical tools, the pair production induced by a Sauter-type electric pulse. We also analyze the scaling properties of the current for a large field strength.
Address [Beltran-Palau, Pau; Navarro-Salas, Jose; Pla, Silvia] Univ Valencia, Fac Fis, Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: pau.beltran@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000534174400011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4399
Permanent link to this record
 

 
Author Marañon-Gonzalez, F.J.; Navarro-Salas, J.
Title (up) Adiabatic regularization for spin-1 fields Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 12 Pages 125001 - 11pp
Keywords
Abstract We analyze the adiabatic regularization scheme to renormalize Proca fields in a four-dimensional Friedmann-Lemaitre-Robertson-Walker spacetime. The adiabatic method is well established for scalar and spin-1/2 fields, but is not yet fully understood for spin-1 fields. We give the details of the construction and show that, in the massless limit, the renormalized stress-energy tensor of the Proca field is closely related to that of a minimally coupled scalar field. Our result is in full agreement with other approaches, based on the effective action, which also show a discontinuity in the massless limit. The scalar field can be naturally regarded as a Stueckelberg-type field. We also test the consistency of our results in de Sitter space.
Address [Maranon-Gonzalez, F. Javier; Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001121689900014 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5871
Permanent link to this record
 

 
Author n_TOF Collaboration (Domingo-Pardo, C. et al); Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Ladarescu, I.; Lerendegui-Marco, J.; Tain, J.L.; Tarifeño-Saldivia, A.
Title (up) Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 59 Issue 1 Pages 8 - 11pp
Keywords
Abstract This article presents a few selected developments and future ideas related to the measurement of (n, gamma ) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with gamma- ray imaging capability for background suppression, and the development of an array of small-volume organic scintilla tors aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area.
Address [Domingo-Pardo, C.; Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Ladarescu, I.; Lerendegui-Marco, J.; Tain, J. L.; Tarifeno-Saldivia, A.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: domingo@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000926364900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5479
Permanent link to this record
 

 
Author El-Neaj, Y.A. et al; Bernabeu, J.
Title (up) AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space Type Journal Article
Year 2020 Publication EPJ Quantum Technology Abbreviated Journal EPJ Quantum Technol.
Volume 7 Issue 1 Pages 6 - 27pp
Keywords
Abstract We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126
Address [El-Neaj, Yousef Abou] Harvard Univ, Phys Dept, Cambridge, MA 02138 USA, Email: o.buchmueller@imperial.ac.uk
Corporate Author Thesis
Publisher Springeropen Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2662-4400 ISBN Medium
Area Expedition Conference
Notes WOS:000519468200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4325
Permanent link to this record
 

 
Author AGATA collaboration (Collado, J. et al); Civera, J.V.; Gadea, A.
Title (up) AGATA phase 2 advancements in front-end electronics Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 59 Issue 6 Pages 133 - 20pp
Keywords
Abstract The AGATA collaboration has a long-standing leadership in the development of front-end electronics for high resolution ?-ray spectroscopy using large volume high purity germanium detectors. For two decades, the AGATA collaboration has been developing state-of-the-art digital electronics processing with high resolution sampling ADC, high-speed signal transfer and fast readout to a high throughput computing (HTC) farm for on-line pulse shape analysis. The collaboration is presently addressing the next challenge of equipping a 4p array with more than 6000 channels in high resolution mode, generating approximately 10 MHz of total trigger requests, coupled to a large variety of complementary instruments. A next generation of front-end electronics, presently under design, is based on industrial products (System on Module FPGA's), has higher integration and lower power consumption. In this contribution, the conceptual design of the new electronics is presented. The results of the very first tests of the pre-production electronics are presented as well as future perspectives.
Address [Collado, J.; Gonzalez, V.] Univ Valencia, Dept Ingn Elect, Valencia 46100, Spain, Email: gadea@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:001015065300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5567
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title (up) Alignment of the ATLAS Inner Detector in Run 2 Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 12 Pages 1194 - 41pp
Keywords
Abstract The performance of the ATLAS Inner Detector alignment has been studied using pp collision data at v s = 13 TeV collected by the ATLAS experiment during Run 2 (2015-2018) of the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the detector geometry as accurately as possible and correct for time-dependent movements. The Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent levels have increasing numbers of degrees of freedom; in total there are almost 750,000. The alignment determines detector geometry on both short and long timescales, where short timescales describe movementswithin anLHCfill. The performance and possible track parameter biases originating from systematic detector deformations are evaluated. Momentum biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias and momentum scale bias after alignment are reduced to less than similar to 0.1 TeV-1 and 0.9 x 10(-3), respectively. Impact parameter biases are also evaluated using tracks within jets.
Address [Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Petridis, A.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000603037700005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4675
Permanent link to this record
 

 
Author Yang, W.Q.; Di Valentino, E.; Mena, O.; Pan, S.; Nunes, R.C.
Title (up) All-inclusive interacting dark sector cosmologies Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 8 Pages 083509 - 15pp
Keywords
Abstract In this paper we explore possible extensions of interacting dark energy cosmologies, where dark energy and dark matter interact nongravitationally with one another. In particular, we focus on the neutrino sector, analyzing the effect of both neutrino masses and the effective number of neutrino species. We consider the Planck 2018 legacy release data combined with several other cosmological probes, finding no evidence for new physics in the dark radiation sector. The current neutrino constraints from cosmology should therefore be regarded as robust, as they are not strongly dependent on the dark sector physics, once all the available observations are combined. Namely, we find a total neutrino mass g, < 0.15 eV and a number of effective relativistic degrees of freedom N-eff = 3.03(-0.33)(+0.33), both at 95% C.L., which are close to those obtained within the ACDM cosmology, M-v < 0.12 eV and N-eff = (+0.36)(-0.35), for the same data combination.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000523633500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4359
Permanent link to this record
 

 
Author Gola, S.; Mandal, S.; Sinha, N.
Title (up) ALP-portal majorana dark matter Type Journal Article
Year 2022 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 37 Issue Pages 2250131 - 14pp
Keywords Axion like particle; heavy neutrinos; dark matter
Abstract Axion like particles (ALPs) and right-handed neutrinos (RHNs) are two well-motivated dark matter (DM) candidates. However, these two particles have a completely different origin. Axion was proposed to solve the strong CP problem, whereas RHNs were introduced to explain light neutrino masses through seesaw mechanisms. We study the case of ALP portal RHN DM (Majorana DM) taking into account existing constraints on ALPs. We consider the leading effective operators mediating interactions between the ALP and Standard Model (SM) particles and three RHNs to generate light neutrino masses through type-I seesaw. Further, ALP-RHN neutrino coupling is introduced to generalize the model which is restricted by the relic density and indirect detection constraint.
Address [Gola, Shivam; Sinha, Nita] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India, Email: shivamg@imsc.res.in;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000854297000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5359
Permanent link to this record
 

 
Author Smith, W.A.; Glazier, D.I.; Mathieu, V.; Albaladejo, M.; Albrecht, M.; Baldwin, Z.; Fernandez-Ramirez, C.; Hammoud, N.; Mikhasenko, M.; Montaña, G.; Perry, R.J.; Pilloni, A.; Shastry, V.; Szczepaniak, A.P.; Winney, D.
Title (up) Ambiguities in partial wave analysis of two spinless meson photoproduction Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 7 Pages 076001 - 12pp
Keywords
Abstract We describe the formalism to analyze the mathematical ambiguities arising in partial-wave analysis of two spinless mesons produced with a linearly polarized photon beam. We show that partial waves are uniquely defined when all accessible observables are considered, for a wave set which includes S and D waves. The inclusion of higher partial waves does not affect our results, and we conclude that there are no mathematical ambiguities in partial-wave analysis of two mesons produced with a linearly polarized photon beam. We present Monte Carlo simulations to illustrate our results.
Address [Smith, W. A.; Shastry, V.; Szczepaniak, A. P.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA, Email: smithwya@iu.edu
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001092811700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5781
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title (up) Amplitude Analysis of B-+/- -> pi(K+K-)-K-+/- Decays Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 123 Issue 23 Pages 231802 - 11pp
Keywords
Abstract The first amplitude analysis of the B-+/- -> pi(K+K-)-K-+/- decay is reported based on a data sample corresponding to an integrated luminosity of 3.0 fb(-1) of pp collisions recorded in 2011 and 2012 with the LHCb detector. The data are found to be best described by a coherent sum of five resonant structures plus a nonresonant component and a contribution from pi pi <-> KK S-wave rescattering. The dominant contributions in the pi(+/-) K(-/+ )and K+ K- systems are the nonresonant and the B-+/- -> rho(1450)(0)pi(+/-) amplitudes, respectively, with fit fractions around 30%. For the rescattering contribution, a sizable fit fraction is observed. This component has the largest CP asymmetry reported to date for a single amplitude of (-66 +/- 4 +/- 2)%, where the first uncertainty is statistical and the second systematic. No significant CP violation is observed in the other contributions.
Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: maria.vieites.diaz@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000501494600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4218
Permanent link to this record