|   | 
Details
   web
Records
Author Pompa, F.; Capozzi, F.; Mena, O.; Sorel, M.
Title (up) Absolute nu Mass Measurement with the DUNE Experiment Type Journal Article
Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 129 Issue 12 Pages 121802 - 6pp
Keywords
Abstract Time of flight delay in the supernova neutrino signal offers a unique tool to set model-independent constraints on the absolute neutrino mass. The presence of a sharp time structure during a first emission phase, the so-called neutronization burst in the electron neutrino flavor time distribution, makes this channel a very powerful one. Large liquid argon underground detectors will provide precision measurements of the time dependence of the electron neutrino fluxes. We derive here a new v mass sensitivity attainable at the future DUNE far detector from a future supernova collapse in our galactic neighborhood, finding a sub-eV reach under favorable scenarios. These values are competitive with those expected for laboratory direct neutrino mass searches.
Address [Pompa, Federica; Capozzi, Francesco; Mena, Olga; Sorel, Michel] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Parc Cientif UV, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: federica.pompa@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000861178800003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5366
Permanent link to this record
 

 
Author Delhom, A.; Macedo, C.F.B.; Olmo, G.J.; Crispino, L.C.B.
Title (up) Absorption by black hole remnants in metric-affine gravity Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 2 Pages 024016 - 12pp
Keywords
Abstract Using numerical methods, we investigate the absorption properties of a family of nonsingular solutions which arise in different metric-affine theories, such as quadratic and Born-Infeld gravity. These solutions continuously interpolate between Schwarzschild black holes and naked solitons with wormhole topology. The resulting spectrum is characterized by a series of quasibound states excitations, associated with the existence of a stable photonsphere.
Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia CSIC, E-46100 Valencia, Spain, Email: adna.delhom@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000474874900007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4075
Permanent link to this record
 

 
Author Begone, G.; Deisenroth, M.P.; Kim, J.S.; Liem, S.; Ruiz de Austri, R.; Welling, M.
Title (up) Accelerating the BSM interpretation of LHC data with machine learning Type Journal Article
Year 2019 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe
Volume 24 Issue Pages 100293 - 5pp
Keywords
Abstract The interpretation of Large Hadron Collider (LHC) data in the framework of Beyond the Standard Model (BSM) theories is hampered by the need to run computationally expensive event generators and detector simulators. Performing statistically convergent scans of high-dimensional BSM theories is consequently challenging, and in practice unfeasible for very high-dimensional BSM theories. We present here a new machine learning method that accelerates the interpretation of LHC data, by learning the relationship between BSM theory parameters and data. As a proof-of-concept, we demonstrate that this technique accurately predicts natural SUSY signal events in two signal regions at the High Luminosity LHC, up to four orders of magnitude faster than standard techniques. The new approach makes it possible to rapidly and accurately reconstruct the theory parameters of complex BSM theories, should an excess in the data be discovered at the LHC.
Address [Begone, Gianfranco; Liem, Sebastian] Univ Amsterdam, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: jongsoo.kim@tu-dortmund.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-6864 ISBN Medium
Area Expedition Conference
Notes WOS:000465292500018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3994
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title (up) Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed Standard Model Type Journal Article
Year 2019 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 34 Issue 25 Pages 1950140 - 27pp
Keywords Phenomenology beyond the Standard Model; lepton anomalous magnetic; moments Atomki anomaly
Abstract The framed Standard Model (FSM) predicts a 0(+) boson with mass around 20 MeV in the “hidden sector,” which mixes at tree level with the standard Higgs hW and hence acquires small couplings to quarks and leptons which can be calculated in the FSM apart from the mixing parameter rho Uh. The exchange of this mixed state U will contribute to g – 2 and to the Lamb shift. By adjusting rho Uh alone, it is found that the FSM can satisfy all present experimental bounds on the g – 2 and Lamb shift anomalies for μand e, and for the latter for both hydrogen and deuterium. The FSM predicts also a 1(-) boson in the “hidden sector” with a mass of 17 MeV, that is, right on top of the Atomki anomaly X. This mixes with the photon at 1-loop level and couples thereby like a dark photon to quarks and leptons. It is however a compound state and is thought likely to possess additional compound couplings to hadrons. By adjusting the mixing parameter and the X's compound coupling to nucleons, the FSM can reproduce the production rate of the X in beryllium decay as well as satisfy all the bounds on X listed so far in the literature. The above two results are consistent in that the U, being 0(+), does not contribute to the Atomki anomaly if parity and angular momentum are conserved, while X, though contributing to g – 2 and Lamb shift, has smaller couplings than U and can, at first instance, be neglected there. Thus, despite the tentative nature of the three anomalies in experiment on the one hand and of the FSM as theory on the other, the accommodation of the former in the latter has strengthened the credibility of both. Indeed, if this FSM interpretation were correct, it would change the whole aspect of the anomalies from just curiosities to windows into a vast hitherto hidden sector comprising at least in part the dark matter which makes up the bulk of our universe.
Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000485680700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4142
Permanent link to this record
 

 
Author Thakore, T.; Devi, M.M.; Agarwalla, S.K.; Dighe, A.
Title (up) Active-sterile neutrino oscillations at INO-ICAL over a wide mass-squared range Type Journal Article
Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 022 - 34pp
Keywords Neutrino Physics; Beyond Standard Model
Abstract We perform a detailed analysis for the prospects of detecting active-sterile oscillations involving a light sterile neutrino, over a large Delta m(41)(2 )range of 10(-5) eV(2) to 10(2) eV(2), using 10 years of atmospheric neutrino data expected from the proposed 50 kt magnetized ICAL detector at the INO. This detector can observe the atmospheric nu(mu), and (nu) over bar (mu) separately over a wide range of energies and baselines, making it sensitive to the magnitude and sign of Arni i over a large range. If there is no light sterile neutrino, ICAL can place competitive upper limit on vertical bar U-mu 4 vertical bar(2) less than or similar to 0.02 at 90% C.L. for Delta m(41)(2) in the range (0.5-5) x 10(-3) eV(2). For the same vertical bar Delta m(41)(2)vertical bar range, ICAL would be able to determine its sign, exploiting the Earth's matter effect in mu(-) and mu(+) events separately if there is indeed a light sterile neutrino in Nature. This would help identify the neutrino mass ordering in the four-neutrino mixing scenario.
Address [Thakore, Tarak] Louisiana State Univ, Baton Rouge, LA 70803 USA, Email: tarak.thakore@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000441224700009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3691
Permanent link to this record
 

 
Author Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M.
Title (up) Addendum to: Improved global fit to non-standard neutrino interactions using COHERENT energy and timing data Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 071 - 6pp
Keywords
Abstract In this addendum we re-assess the constraints on Non-Standard Interactions (NSI) from the combined analysis of data from oscillation experiments and from COHERENT after including the new data released since the publication of ref. [1].
Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Calle Catedrat Jose Beltran, E-46980 Valencia, Spain, Email: pcoloma@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000600015400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4656
Permanent link to this record
 

 
Author Barbero, J.F.; Ferreiro, A.; Navarro-Salas, J.; Villaseñor, E.J.S.
Title (up) Adiabatic expansions for Dirac fields, renormalization, and anomalies Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 2 Pages 025016 - 11pp
Keywords
Abstract We introduce an iterative method to univocally determine the adiabatic expansion of the modes of Dirac fields in spatially homogeneous external backgrounds. We overcome the ambiguities found in previous studies and use this new procedure to improve the adiabatic regularization/renormalization scheme. We provide details on the application of the method for Dirac fields living in a four-dimensional Friedmann-Lemaitre-Robertson-Walker spacetime with a Yukawa coupling to an external scalar field. We check the consistency of our proposal by working out the conformal anomaly. We also analyze a two-dimensional Dirac field in Minkowski space coupled to a homogeneous electric field and reproduce the known results on the axial anomaly. The adiabatic expansion of the modes given here can be used to properly characterize the allowed physical states of the Dirac fields in the above external backgrounds.
Address [Barbero G, J. Fernando] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: fbarbero@iem.cfmac.csic.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000439414000006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3673
Permanent link to this record
 

 
Author Ferreiro, A.; Pla, S.
Title (up) Adiabatic regularization and preferred vacuum state for the lambda phi^4 field theory in cosmological spacetimes Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 106 Issue 6 Pages 065015 - 12pp
Keywords
Abstract We extend the method of adiabatic regularization by introducing an arbitrary parameter μfor a scalar field with quartic self-coupling in a Friedmann-Lemaitre-Robertson-Walker spacetime at one-loop order. The subtraction terms constructed from this extended version allow us to define a preferred vacuum state at a fixed time ri 1/4 ri0 for this theory. We compute this vacuum state for two commonly used background fields in cosmology, specially in the context of preheating. We also give a possible prescription for an adequate value for mu.
Address [Ferreiro, Antonio] Dublin City Univ, Ctr Astrophys & Relat, Sch Math Sci, Dublin, Ireland, Email: antonio.ferreiro@dcu.ie;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000862258200010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5382
Permanent link to this record
 

 
Author Beltran-Palau, P.; Navarro-Salas, J.; Pla, S.
Title (up) Adiabatic regularization for Dirac fields in time-varying electric backgrounds Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 10 Pages 105014 - 15pp
Keywords
Abstract The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the electric current induced by quantized scalar fields in a time-varying electric background. This can be done in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one. Assuming this, we further extend the method to deal with Dirac fields in four space-time dimensions. This requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent electric field, which is different from the conventional expansion used for scalar fields. Our proposal is consistent, in the massless limit, with the conformal anomaly. We also provide evidence that our proposed adiabatic expansion for the fermionic modes parallels the Schwinger-DeWitt adiabatic expansion of the two-point function. We give the renormalized expression of the electric current and analyze, using numerical and analytical tools, the pair production induced by a Sauter-type electric pulse. We also analyze the scaling properties of the current for a large field strength.
Address [Beltran-Palau, Pau; Navarro-Salas, Jose; Pla, Silvia] Univ Valencia, Fac Fis, Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: pau.beltran@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000534174400011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4399
Permanent link to this record
 

 
Author Marañon-Gonzalez, F.J.; Navarro-Salas, J.
Title (up) Adiabatic regularization for spin-1 fields Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 12 Pages 125001 - 11pp
Keywords
Abstract We analyze the adiabatic regularization scheme to renormalize Proca fields in a four-dimensional Friedmann-Lemaitre-Robertson-Walker spacetime. The adiabatic method is well established for scalar and spin-1/2 fields, but is not yet fully understood for spin-1 fields. We give the details of the construction and show that, in the massless limit, the renormalized stress-energy tensor of the Proca field is closely related to that of a minimally coupled scalar field. Our result is in full agreement with other approaches, based on the effective action, which also show a discontinuity in the massless limit. The scalar field can be naturally regarded as a Stueckelberg-type field. We also test the consistency of our results in de Sitter space.
Address [Maranon-Gonzalez, F. Javier; Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, CSIC, Burjassot 46100, Valencia, Spain, Email: jnavarro@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001121689900014 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5871
Permanent link to this record