toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pompa, F.; Capozzi, F.; Mena, O.; Sorel, M. url  doi
openurl 
  Title (up) Absolute nu Mass Measurement with the DUNE Experiment Type Journal Article
  Year 2022 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 129 Issue 12 Pages 121802 - 6pp  
  Keywords  
  Abstract Time of flight delay in the supernova neutrino signal offers a unique tool to set model-independent constraints on the absolute neutrino mass. The presence of a sharp time structure during a first emission phase, the so-called neutronization burst in the electron neutrino flavor time distribution, makes this channel a very powerful one. Large liquid argon underground detectors will provide precision measurements of the time dependence of the electron neutrino fluxes. We derive here a new v mass sensitivity attainable at the future DUNE far detector from a future supernova collapse in our galactic neighborhood, finding a sub-eV reach under favorable scenarios. These values are competitive with those expected for laboratory direct neutrino mass searches.  
  Address [Pompa, Federica; Capozzi, Francesco; Mena, Olga; Sorel, Michel] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Parc Cientif UV, c Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: federica.pompa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000861178800003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5366  
Permanent link to this record
 

 
Author Delhom, A.; Macedo, C.F.B.; Olmo, G.J.; Crispino, L.C.B. url  doi
openurl 
  Title (up) Absorption by black hole remnants in metric-affine gravity Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 2 Pages 024016 - 12pp  
  Keywords  
  Abstract Using numerical methods, we investigate the absorption properties of a family of nonsingular solutions which arise in different metric-affine theories, such as quadratic and Born-Infeld gravity. These solutions continuously interpolate between Schwarzschild black holes and naked solitons with wormhole topology. The resulting spectrum is characterized by a series of quasibound states excitations, associated with the existence of a stable photonsphere.  
  Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia CSIC, E-46100 Valencia, Spain, Email: adna.delhom@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000474874900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4075  
Permanent link to this record
 

 
Author Begone, G.; Deisenroth, M.P.; Kim, J.S.; Liem, S.; Ruiz de Austri, R.; Welling, M. url  doi
openurl 
  Title (up) Accelerating the BSM interpretation of LHC data with machine learning Type Journal Article
  Year 2019 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 24 Issue Pages 100293 - 5pp  
  Keywords  
  Abstract The interpretation of Large Hadron Collider (LHC) data in the framework of Beyond the Standard Model (BSM) theories is hampered by the need to run computationally expensive event generators and detector simulators. Performing statistically convergent scans of high-dimensional BSM theories is consequently challenging, and in practice unfeasible for very high-dimensional BSM theories. We present here a new machine learning method that accelerates the interpretation of LHC data, by learning the relationship between BSM theory parameters and data. As a proof-of-concept, we demonstrate that this technique accurately predicts natural SUSY signal events in two signal regions at the High Luminosity LHC, up to four orders of magnitude faster than standard techniques. The new approach makes it possible to rapidly and accurately reconstruct the theory parameters of complex BSM theories, should an excess in the data be discovered at the LHC.  
  Address [Begone, Gianfranco; Liem, Sebastian] Univ Amsterdam, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: jongsoo.kim@tu-dortmund.de  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-6864 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000465292500018 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3994  
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title (up) Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed Standard Model Type Journal Article
  Year 2019 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 34 Issue 25 Pages 1950140 - 27pp  
  Keywords Phenomenology beyond the Standard Model; lepton anomalous magnetic; moments Atomki anomaly  
  Abstract The framed Standard Model (FSM) predicts a 0(+) boson with mass around 20 MeV in the “hidden sector,” which mixes at tree level with the standard Higgs hW and hence acquires small couplings to quarks and leptons which can be calculated in the FSM apart from the mixing parameter rho Uh. The exchange of this mixed state U will contribute to g – 2 and to the Lamb shift. By adjusting rho Uh alone, it is found that the FSM can satisfy all present experimental bounds on the g – 2 and Lamb shift anomalies for μand e, and for the latter for both hydrogen and deuterium. The FSM predicts also a 1(-) boson in the “hidden sector” with a mass of 17 MeV, that is, right on top of the Atomki anomaly X. This mixes with the photon at 1-loop level and couples thereby like a dark photon to quarks and leptons. It is however a compound state and is thought likely to possess additional compound couplings to hadrons. By adjusting the mixing parameter and the X's compound coupling to nucleons, the FSM can reproduce the production rate of the X in beryllium decay as well as satisfy all the bounds on X listed so far in the literature. The above two results are consistent in that the U, being 0(+), does not contribute to the Atomki anomaly if parity and angular momentum are conserved, while X, though contributing to g – 2 and Lamb shift, has smaller couplings than U and can, at first instance, be neglected there. Thus, despite the tentative nature of the three anomalies in experiment on the one hand and of the FSM as theory on the other, the accommodation of the former in the latter has strengthened the credibility of both. Indeed, if this FSM interpretation were correct, it would change the whole aspect of the anomalies from just curiosities to windows into a vast hitherto hidden sector comprising at least in part the dark matter which makes up the bulk of our universe.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000485680700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4142  
Permanent link to this record
 

 
Author Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Maltoni, M. url  doi
openurl 
  Title (up) Addendum to: Improved global fit to non-standard neutrino interactions using COHERENT energy and timing data Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 071 - 6pp  
  Keywords  
  Abstract In this addendum we re-assess the constraints on Non-Standard Interactions (NSI) from the combined analysis of data from oscillation experiments and from COHERENT after including the new data released since the publication of ref. [1].  
  Address [Coloma, Pilar] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Calle Catedrat Jose Beltran, E-46980 Valencia, Spain, Email: pcoloma@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000600015400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4656  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva