|   | 
Details
   web
Records
Author Baran, J. et al; Brzezinski, K.
Title (up) Feasibility of the J-PET to monitor the range of therapeutic proton beams Type Journal Article
Year 2024 Publication Physica Medica Abbreviated Journal Phys. Medica
Volume 118 Issue Pages 103301 - 9pp
Keywords PET; Range monitoring; J-PET; Monte Carlo simulations; Proton radiotherapy
Abstract Purpose: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J -PET) scanner for intra-treatment proton beam range monitoring. Methods: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J -PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread -Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J -PET scanner prototype dedicated to the proton beam range assessment. Results: The investigations indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple -layer dual -head geometry. The results indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for the clinical application, Conclusions: We performed simulation studies demonstrating that the feasibility of the J -PET detector for PET -based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre -clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double -layer cylindrical and triple -layer dual -head J -PET geometry configurations seem promising for future clinical application.
Address [Baran, Jakub; Silarski, Michal; Chug, Neha; Coussat, Aurelien; Czerwinski, Eryk; Dadgar, Meysam; Dulski, Kamil; Eliyan, Kavya, V; Gajos, Aleksander; Kacprzak, Krzysztof; Kaplon, Lukasz; Korcyl, Grzegorz; Kozik, Tomasz; Kumar, Deepak; Niedzwiecki, Szymon; Panek, Dominik; Parzych, Szymon; del Rio, Elena Perez; Simbarashe, Moyo; Sharma, Sushil; Shivani; Skurzok, Magdalena; Stepien, Ewa L.; Tayefi, Keyvan; Tayefi, Faranak; Moskal, Pawel] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, 11 Lojasiewicza St, PL-30348 Krakow, Poland, Email: jakubbaran92@gmail.com
Corporate Author Thesis
Publisher Elsevier Sci Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1120-1797 ISBN Medium
Area Expedition Conference
Notes WOS:001178648400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5990
Permanent link to this record
 

 
Author Agrawal, P. et al; Hernandez, P.; Lopez-Pavon, J.
Title (up) Feebly-interacting particles: FIPs 2020 workshop report Type Journal Article
Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 11 Pages 1015 - 137pp
Keywords
Abstract With the establishment and maturation of the experimental programs searching for new physics with sizeable couplings at the LHC, there is an increasing interest in the broader particle and astrophysics community for exploring the physics of light and feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The workshop has gathered together experts from collider, beam dump, fixed target experiments, as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments, and dark matter direct detection communities to discuss progress in experimental searches and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across different fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents the summary of the talks presented at the workshops and the outcome of the subsequent discussions held immediately after. It aims to provide a clear picture of this blooming field and proposes a few recommendations for the next round of experimental results.
Address [Agrawal, P.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England, Email: gaia.lanfranchi@lnf.infn.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000720658000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5043
Permanent link to this record
 

 
Author Antel, C. et al; Lopez-Pavon, J.; Sandner, S.; Urrea, S.
Title (up) Feebly-interacting particles: FIPs 2022 Workshop Report Type Journal Article
Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 83 Issue 12 Pages 1122 - 266pp
Keywords
Abstract Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs.
Address [Antel, C.] Univ Geneva, Dept Phys Nucl & Corpusculaire, Geneva, Switzerland, Email: MGiannotti@barry.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001127234200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5908
Permanent link to this record
 

 
Author Agius, D.; Essig, R.; Gaggero, D.; Scarcella, F.; Suczewski, G.; Valli, M.
Title (up) Feedback in the dark: a critical examination of CMB bounds on primordial black holes Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 003 - 36pp
Keywords accretion; cosmological parameters from CMBR; dark matter theory; primordial black holes
Abstract If present in the early universe, primordial black holes (PBHs) would have accreted matter and emitted high-energy photons, altering the statistical properties of the Cosmic Microwave Background (CMB). This mechanism has been used to constrain the fraction of dark matter that is in the form of PBHs to be much smaller than unity for PBH masses well above one solar mass. Moreover, the presence of dense dark matter mini -halos around the PBHs has been used to set even more stringent constraints, as these would boost the accretion rates. In this work, we critically revisit CMB constraints on PBHs taking into account the role of the local ionization of the gas around them. We discuss how the local increase in temperature around PBHs can prevent the dark matter mini -halos from strongly enhancing the accretion process, in some cases significantly weakening previously derived CMB constraints. We explore in detail the key ingredients of the CMB bound and derive a conservative limit on the cosmological abundance of massive PBHs.
Address [Agius, Dominic] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: dominic.agius@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001262242300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6187
Permanent link to this record
 

 
Author Vidaña, I.; Feijoo, A.; Albaladejo, M.; Nieves, J.; Oset, E.
Title (up) Femtoscopic correlation function for the Tcc(3875)+ state Type Journal Article
Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 846 Issue Pages 138201 - 9pp
Keywords Femtoscopy; Tcc
Abstract We have conducted a study of the femtoscopic correlation functions for the D0D*+ and D+D*0 channels that build the Tcc state. We develop a formalism that allows us to factorize the scattering amplitudes outside the integrals in the formulas, and the integrals involve the range of the strong interaction explicitly. For a source of size of 1 fm, we find values for the correlation functions of the D0D*+ and D+D*0 channels at the origin around 30 and 2.5, respectively, and we see these observables converging to unity already for relative momenta of the order of 200 MeV. We conduct tests to see the relevance of the different contributions to the correlation function and find that it mostly provides information on the scattering length, but should the correlation functions be measured with the precision of the latest experiments, the effective range of the D0D*+ could also be obtained.
Address [Vidana, I.] Univ Catania, Ist Nazl Fis Nucl, Dipartimento Fis Ettore Majorana, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: isaac.vidana@ct.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001092697200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5777
Permanent link to this record
 

 
Author Albaladejo, M.; Nieves, J.; Ruiz Arriola, E.
Title (up) Femtoscopic signatures of the lightest S-wave scalar open-charm mesons Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue Pages 014020 - 7pp
Keywords
Abstract We predict femtoscopy correlation functions for S-wave D(s)ϕ pairs of lightest pseudoscalar open-charm mesons and Goldstone bosons from next-to-leading-order unitarized heavy-meson chiral perturbation theory amplitudes. The effect of the two-state structure around 2300 MeV can be clearly seen in the (S,I)=(0,1/2) Dπ, Dη, and Ds¯K correlation functions, while in the scalar-strange (1,0) sector, the D∗s0(2317)± state lying below the DK threshold produces a depletion of the correlation function near threshold. These exotic states owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D(s). The predicted correlation functions could be experimentally measured and will shed light into the hadron spectrum, confirming that it should be viewed as more than a collection of quark model states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6089
Permanent link to this record
 

 
Author Cepedello, R.; Esser, F.; Hirsch, M.; Sanz, V.
Title (up) Fermionic UV models for neutral triple gauge boson vertices Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 275 - 28pp
Keywords Effective Field Theories; SMEFT; Specific BSM Phenomenology; Vector-Like Fermions
Abstract Searches for anomalous neutral triple gauge boson couplings (NTGCs) provide important tests for the gauge structure of the standard model. In SMEFT (“standard model effective field theory”) NTGCs appear only at the level of dimension-8 operators. While the phenomenology of these operators has been discussed extensively in the literature, renormalizable UV models that can generate these operators are scarce. In this work, we study a variety of extensions of the SM with heavy fermions and calculate their matching to d = 8 NTGC operators. We point out that the complete matching of UV models requires four different CP-conserving d = 8 operators and that the single CPC d = 8 operator, most commonly used by the experimental collaborations, does not describe all possible NTGC form factors. Despite stringent experimental constraints on NTGCs, limits on the scale of UV models are relatively weak, because their contributions are doubly suppressed (being d = 8 and 1-loop). We suggest a series of benchmark UV scenarios suitable for interpreting searches for NTGCs in the upcoming LHC runs, obtain their current limits and provide estimates for the expected sensitivity of the high-luminosity LHC.
Address [Cepedello, Ricardo] Univ Granada, Dept Fis Teor & Cosmos, Campus Fuentenueva, E-18071 Granada, Spain, Email: ricepe@ugr.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001282227200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6222
Permanent link to this record
 

 
Author Martinez Torres, A.; Khemchandani, K.P.; Roca, L.; Oset, E.
Title (up) Few-body systems consisting of mesons Type Journal Article
Year 2020 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.
Volume 61 Issue 4 Pages 35 - 16pp
Keywords
Abstract We present a work which is meant to inspire the few-body practitioners to venture into the study of new, more exotic, systems and to hadron physicists, working mostly on two-body problems, to move in the direction of studying related few-body systems. For this purpose we devote the discussions in the introduction to show how the input two-body amplitudes can be easily obtained using techniques of the chiral unitary theory, or its extensions to the heavy quark sector. We then briefly explain how these amplitudes can be used to solve the Faddeev equations or a simpler version obtained by treating the three-body scattering as that of a particle on a fixed center. Further, we give some examples of the results obtained by studying systems involving mesons. We have also addressed the field of many meson systems, which is currently almost unexplored, but for which we envisage a bright future. Finally, we give a complete list of works dealing with unconventional few-body systems involving one or several mesons, summarizing in this way the findings on the topic, and providing a motivation for those willing to investigate such systems.
Address [Martinez Torres, A.] Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil, Email: amartine@if.usp.br;
Corporate Author Thesis
Publisher Springer Wien Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0177-7963 ISBN Medium
Area Expedition Conference
Notes WOS:000572646500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4546
Permanent link to this record
 

 
Author Camarda, S.; Cieri, L.; Ferrera, G.
Title (up) Fiducial perturbative power corrections within the q(T) subtraction formalism Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 6 Pages 575 - 8pp
Keywords
Abstract We consider higher-order QCD corrections to the production of high-mass systems in hadron collisions within the transverse-momentum (q(T)) subtraction formalism. We present amethod to consistently remove the linear power corrections in q(T) which appears when fiducial kinematical cuts are applied on the final state system. We consider explicitly the case of fiducial cross sections for Drell-Yan lepton pair production at the Large Hadron Collider up to next-to-nextto-next-to-leading order (N3LO) in QCD. We have implemented our method within the DYTurbo numerical program and we have obtained perturbative predictions which are in agreement at the permille level with those obtained with local subtraction formalisms up to the next-to-next-toleading order (NNLO). At the N3LO we are able to provide predictions for fiducial cross sections with numerical accuracy at the permille level.
Address [Camarda, Stefano] CERN, CH-1211 Geneva, Switzerland, Email: leandrosanber@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000819424700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5281
Permanent link to this record
 

 
Author Bernal, N.; Donini, A.; Folgado, M.G.; Rius, N.
Title (up) FIMP Dark Matter in Clockwork/Linear Dilaton extra-dimensions Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 061 - 29pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Large Extra Dimensions
Abstract We study the possibility that Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the Standard Model particles in the framework of a Clockwork/Linear Dilaton (CW/LD) model. We restrict here to the case in which the DM particles are scalar fields. This paper extends our previous study of FIMP's in Randall-Sundrum (RS) warped extra-dimensions. As it was the case in the RS scenario, also in the CW/LD model we find a significant region of the parameter space in which the observed DM relic abundance can be reproduced with scalar DM mass in the MeV range, with a reheating temperature varying from 10 GeV to 10(9) GeV. We comment on the similarities of the results in both extra-dimensional models.
Address [Bernal, Nicolas] Univ Antonio Narino, Ctr Invest, Carrera 3 Este 47A-15, Bogota, Colombia, Email: nicolas.bernal@uan.edu.co;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000639271100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4792
Permanent link to this record