toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chianese, M.; Fiorillo, D.F.G.; Hajjar, R.; Miele, G.; Saviano, N. url  doi
openurl 
  Title (up) Constraints on heavy decaying dark matter with current gamma-ray measurements Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 11 Issue 11 Pages 035 - 13pp  
  Keywords dark matter theory; ultra high energy photons and neutrinos  
  Abstract Among the several strategies for indirect searches of dark matter, a very promising one is to look for the gamma-rays from decaying dark matter. Here we use the most up-to-date upper bounds on the gamma-ray flux from 10(5) to 10(11) GeV, obtained from CASA-MIA, KASCADE, KASCADE-Grande, Pierre Auger Observatory, Telescope Array and EAS-MSU. We obtain global limits on dark matter lifetime in the range of masses in m(DM) = [10(7)-10(15)] GeV. We provide the bounds for a set of decay channels chosen as representatives. The constraints derived here are new and cover a region of the parameter space not yet explored. We compare our results with the projected constraints from future neutrino telescopes, in order to quantify the improvement that will be obtained by the complementary high-energy neutrino searches.  
  Address [Chianese, Marco; Fiorillo, Damiano F. G.; Miele, Gennaro] Univ Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo, I-80126 Naples, Italy, Email: chianese@na.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000727716400012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5051  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (up) Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 760 Issue Pages 143-148  
  Keywords Neutrino telescope; Diffuse muon neutrino flux; ANTARES  
  Abstract A highly significant excess of high-energy astrophysical neutrinos has been reported by the IceCube Collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This could be due to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, located in the Mediterranean Sea, has been taking data since 2007. It offers the best sensitivity to muon neutrinos produced by galactic cosmic ray interactions in this region of the sky. In this letter a search for an extended neutrino flux from the Galactic Ridge region is presented. Different models of neutrino production by cosmic ray propagation are tested. No excess of events is observed and upper limits for different neutrino flux spectral indices Gamma are set. For Gamma = 2.4 the 90% confidence level flux upper limit at 100 TeV for one neutrino flavour corresponds to phi(1f)(0) (100TeV) = 2.0 . 10(-17) GeV-1 cm(-2) s(-1) sr(-1). Under this assumption, at most two events of the IceCube cosmic candidates can originate from the Galactic Ridge. A simple power-law extrapolation of the Fermi-LAT flux to account for IceCube High Energy Starting Events is excluded at 90% confidence level.  
  Address [Adrian-Martinez, S.; Ardid, M.; Martinez-Mora, J. A.; Saldana, M.] Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, Paranimf 1, Gandia 46730, Spain, Email: luigiantonio.fusco@bo.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000382890500022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2815  
Permanent link to this record
 

 
Author Lattanzi, M.; Gerbino, M.; Freese, K.; Kane, G.; Valle, J.W.F. url  doi
openurl 
  Title (up) Cornering (quasi) degenerate neutrinos with cosmology Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 213 - 24pp  
  Keywords Cosmology of Theories beyond the SM; Neutrino Physics  
  Abstract In light of the improved sensitivities of cosmological observations, we examine the status of quasi-degenerate neutrino mass scenarios. Within the simplest extension of the standard cosmological model with massive neutrinos, we find that quasi-degenerate neutrinos are severely constrained by present cosmological data and neutrino oscillation experiments. We find that Planck 2018 observations of cosmic microwave background (CMB) anisotropies disfavour quasi-degenerate neutrino masses at 2.4 Gaussian sigma 's, while adding baryon acoustic oscillations (BAO) data brings the rejection to 5.9 sigma 's. The highest statistical significance with which one would be able to rule out quasi-degeneracy would arise if the sum of neutrino masses is Sigma m(v) = 60 meV (the minimum allowed by neutrino oscillation experiments); indeed a sensitivity of 15 meV, as expected from a combination of future cosmological probes, would further improve the rejection level up to 17 sigma. We discuss the robustness of these projections with respect to assumptions on the underlying cosmological model, and also compare them with bounds from beta decay endpoint and neutrinoless double beta decay studies.  
  Address [Lattanzi, Massimiliano; Gerbino, Martina] Ist Nazl Fis Nucl, Sez Ferrara, Polo Sci & Tecnol,Edificio C,Via Saragat 1, I-44122 Ferrara, Italy, Email: lattanzi@fe.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000588150500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4603  
Permanent link to this record
 

 
Author Double Chooz collaboration (Abrahao, T. et al); Novella, P. url  doi
openurl 
  Title (up) Cosmic-muon characterization and annual modulation measurement with Double Chooz detectors Type Journal Article
  Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 02 Issue 2 Pages 017 - 20pp  
  Keywords cosmic ray experiments; neutrino detectors  
  Abstract A study on cosmic muons has been performed for the two identical near and far neutrino detectors of the Double Chooz experiment, placed at similar to 120 and similar to 300 m. w.e. underground respectively, including the corresponding simulations using the MUSIC simulation package. This characterization has allowed us to measure the muon flux reaching both detectors to be (3.64 +/- 0.04) x 10(-4) cm(-2) s(-1) for the near detector and (7.00 +/- 0.05) x 10(-5) cm(-2) s(-1) for the far one. The seasonal modulation of the signal has also been studied observing a positive correlation with the atmospheric temperature, leading to an effective temperature coefficient of alpha(T) = 0.212 +/- 0.024 and 0.355 +/- 0.019 for the near and far detectors respectively. These measurements, in good agreement with expectations based on theoretical models, represent one of the first measurements of this coefficient in shallow depth installations.  
  Address [Abrahao, T.; Bekman, I.; Cerrada, M.; Corpace, O.; Jochum, J.; LoSecco, J. M.; Maricic, J.; Nagasaka, Y.; Veyssiere, C.; Yermia, F.] Ctr Brasileiro Pesquisas Fisicas, BR-22290180 Rio De Janeiro, RJ, Brazil, Email: hgomez@apc.univ-paris7.fr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399455000017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3110  
Permanent link to this record
 

 
Author D'Eramo, F.; Di Valentino, E.; Giare, W.; Hajkarim, F.; Melchiorri, A.; Mena, O.; Renzi, F.; Yun, S. url  doi
openurl 
  Title (up) Cosmological bound on the QCD axion mass, redux Type Journal Article
  Year 2022 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 022 - 35pp  
  Keywords axions; cosmology of theories beyond the SM; cosmological neutrinos; neutrino masses from cosmology  
  Abstract We revisit the joint constraints in the mixed hot dark matter scenario in which both thermally produced QCD axions and relic neutrinos are present. Upon recomputing the cosmological axion abundance via recent advances in the literature, we improve the state-of-the-art analyses and provide updated bounds on axion and neutrino masses. By avoiding approximate methods, such as the instantaneous decoupling approximation, and limitations due to the limited validity of the perturbative approach in QCD that forced to artificially divide the constraints from the axion-pion and the axion-gluon production channels, we find robust and self-consistent limits. We investigate the two most popular axion frameworks: KSVZ and DFSZ. From Big Bang Nucleosynthesis (BBN) light element abundances data we find for the KSVZ axion Delta N-eff < 0.31 and an axion mass bound m(a) < 0.53 eV (i.e., a bound on the axion decay constant f(a) > 1.07 x 10(7) GeV) both at 95% CL. These BBN bounds are improved to Delta N-eff < 0.14 and m(a) < 0.16 eV (f(a) > 3.56 x 10(7) GeV) if a prior on the baryon energy density from Cosmic Microwave Background (CMB) data is assumed. When instead considering cosmological observations from the CMB temperature, polarization and lensing from the Planck satellite combined with large scale structure data we find Delta N-eff < 0.23, m(a) < 0.28 eV (f(a) > 2.02 x 10(7) GeV) and Sigma m(nu) < 0.16 eV at 95% CL. This corresponds approximately to a factor of 5 improvement in the axion mass bound with respect to the existing limits. Very similar results are obtained for the DFSZ axion. We also forecast upcoming observations from future CMB and galaxy surveys, showing that they could reach percent level errors for m(a) similar to 1 eV.  
  Address [D'Eramo, Francesco; Hajkarim, Fazlollah; Yun, Seokhoon] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy, Email: francesco.deramo@pd.infn.it;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000863296000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5383  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva