toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Beltran, R.; Cottin, G.; Hirsch, M.; Titov, A.; Wang, Z.S. url  doi
openurl 
  Title (up) Reinterpretation of searches for long-lived particles from meson decays Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 031 - 31pp  
  Keywords New Light Particles; Axions and ALPs; Sterile or Heavy Neutrinos; SMEFT  
  Abstract Many models beyond the Standard Model predict light and feebly interacting particles that are often long-lived. These long-lived particles (LLPs) in many cases can be produced from meson decays. In this work, we propose a simple and quick reinterpretation method for models predicting LLPs produced from meson decays. With the method, we are not required to run Monte-Carlo simulation, implement detector geometries and efficiencies, or apply experimental cuts in an event analysis, as typically done in recasting and reinterpretation works. The main ingredients our method requires are only the theoretical input, allowing for computation of the production and decay rates of the LLPs. There are two conditions for the method to work: firstly, the LLPs in the models considered should be produced from a set of mesons with similar mass and lifetime (or the same meson) and second, the LLPs should, in general, have a lab-frame decay length much larger than the distance between the interaction point and the detector. As an example, we use this method to reinterpret exclusion bounds on heavy neutral leptons (HNLs) in the minimal “3+1” scenario, into those for HNLs in the general effective-field-theory framework as well as for axion-like particles. We are able to reproduce existing results, and obtain new bounds via reinterpretation of past experimental results, in particular, from CHARM and Belle.  
  Address [Beltran, Rebeca; Hirsch, Martin] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, 22085, E-46071 Valencia, Spain, Email: wzs@mx.nthu.edu.tw  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000983316500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5528  
Permanent link to this record
 

 
Author Cottin, G.; Helo, J.C.; Hirsch, M.; Silva, D. url  doi
openurl 
  Title (up) Revisiting the LHC reach in the displaced region of the minimal left-right symmetric model Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 11 Pages 115013 - 4pp  
  Keywords  
  Abstract We revisit discovery prospects for a long-lived sterile neutrino N at the LHC in the context of left-right symmetric theories. We focus on a displaced vertex search strategy sensitive to O(GeV) neutrino masses produced via a right-handed W-R boson. Both on-shell and off-shell Drell-Yan production of W-R are considered. We estimate the reach as a function of m(N) and m(WR). With root s = 13 TeV and 300/fb of integrated luminosity, the LHC can probe neutrino masses as high as approximately 30 GeV and m(wR) around 6 TeV. The reach goes up to 11.5 TeV with 3000/tb and m(N) similar to 45 GeV. This represents an improvement of a factor of 2 in sensitivity with respect to earlier work.  
  Address [Cottin, Giovanna] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan, Email: gcottin@phys.ntu.edu.tw  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470867500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4055  
Permanent link to this record
 

 
Author Gonzalez, L.; Helo, J.C.; Hirsch, M.; Kovalenko, S.G. url  doi
openurl 
  Title (up) Scalar-mediated double beta decay and LHC Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 130 - 15pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract The decay rate of neutrinoless double beta (0 nu beta beta) decay could be dominated by Lepton Number Violating (LNV) short-range diagrams involving only heavy scalar intermediate particles, known as “topology-II” diagrams. Examples are diagrams with diquarks, leptoquarks or charged scalars. Here, we compare the LNV discovery potentials of the LHC and 0 nu beta beta-decay experiments, resorting to three example models, which cover the range of the optimistic-pessimistic cases for 0 nu beta beta decay. We use the LHC constraints from dijet as well as leptoquark searches and find that already with 20/fb the LHC will test interesting parts of the parameter space of these models, not excluded by the current limits on 0 nu beta beta-decay.  
  Address [Gonzalez, L.; Helo, J. C.; Kovalenko, S. G.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Casilla 110-5, Valparaiso, Chile, Email: lorena.gonzalez@alumnos.usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399774600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3060  
Permanent link to this record
 

 
Author Cottin, G.; Helo, J.C.; Hirsch, M. url  doi
openurl 
  Title (up) Searches for light sterile neutrinos with multitrack displaced vertices Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 5 Pages 055025 - 6pp  
  Keywords  
  Abstract We study discovery prospects for long-lived sterile neutrinos at the LHC with multitrack displaced vertices, with masses below the electroweak scale. We reinterpret current displaced vertex searches making use of publicly available, parametrized selection efficiencies for modeling the detector response to displaced vertices. We focus on the production of right-handed WR bosons and neutrinos N in a left-right symmetric model, and find poor sensitivity. After proposing a different trigger strategy ( considering the prompt lepton accompanying the neutrino displaced vertex) and optimized cuts in the invariant mass and track multiplicity of the vertex, we find that the LHC with root s = 13 TeV and 300 fb(-1) is able to probe sterile neutrino masses between 10 GeV < m(N) < 20 GeV ( for a right-handed gauge boson mass of 2 TeV < m(WR) < 3.5 TeV). To probe higher masses up to m(N) similar to 30 GeV and m(WR) < 5 TeV, 3000 fb(-1) will be needed. This work joins other efforts in motivating dedicated experimental searches to target this low sterile neutrino mass region.  
  Address [Cottin, Giovanna] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England, Email: gcottin@phys.ntu.edu.tw;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427640400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3526  
Permanent link to this record
 

 
Author Alimena, J. et al; Hirsch, M.; Mamuzic, J.; Mitsou, V.A.; Santra, A. url  doi
openurl 
  Title (up) Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 9 Pages 090501 - 226pp  
  Keywords beyond the Standard Model; long-lived particles; Large Hadron Collider; high-luminosity LHC; collider phenomenology; high-energy collider experiments  
  Abstract Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.  
  Address [Alimena, Juliette; Hill, Christopher S.] Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43210 USA, Email: juliette.alimena@cern.ch;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000570614200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4535  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva