toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Azcarraga, J.A.; Gutiez, D.; Izquierdo, J.M. url  doi
openurl 
  Title (up) Extended D=3 Bargmann supergravity from a Lie algebra expansion Type Journal Article
  Year 2019 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B  
  Volume 946 Issue Pages 114706 - 14pp  
  Keywords  
  Abstract In this paper we show how the method of Lie algebra expansions may be used to obtain, in a simple way, both the extended Bargmann Lie superalgebra and the Chern-Simons action associated to it in three dimensions, starting from D = 3, N = 2 superPoincare and its corresponding Chern-Simons supergravity. (C) 2019 The Author(s). Published by Elsevier B.V.  
  Address [de Azcarraga, J. A.] CSIC UVEG, Dept Fis Teor, Valencia 46100, Spain, Email: azcarrag@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0550-3213 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000487935600012 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4156  
Permanent link to this record
 

 
Author Alves, J.M.; Botella, F.J.; Branco, G.C.; Nebot, M. url  doi
openurl 
  Title (up) Extending trinity to the scalar sector through discrete flavoured symmetries Type Journal Article
  Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 80 Issue 8 Pages 710 - 14pp  
  Keywords  
  Abstract We conjecture the existence of a relation between elementary scalars and fermions, making it plausible the existence of three Higgs doublets. We introduce a Trinity Principle (TP) which, given the fact that there are no massless quarks, requires the existence of a minimum of three Higgs doublets. The TP states that each row of the mass matrix of a quark of a given charge should receive the contribution from one and only one scalar doublet and furthermore a given scalar doublet should contribute to one and only one row of the mass matrix of a quark of a given charge. This principle is analogous to the Natural Flavour Conservation (NFC) of Glashow and Weinberg with the key distinction that NFC required the introduction of a flavour blind symmetry, while the TP requires a flavoured symmetry, to be implemented in a natural way. We provide two examples which satisfy the Trinity Principle based on Z(3) and Z(2) x Z(2)' flavoured symmetries, and show that they are the minimal multi-Higgs extensions of the Standard Model where CP can be imposed as a symmetry of the full Lagrangian and broken by the vacuum, without requiring soft-breaking terms. We show that the vacuum phases are sufficient to generate a complex CKM matrix, in agreement with experiment. The above mentioned flavoured symmetries lead to a strong reduction in the number of parameters in the Yukawa interactions, enabling a control of the Scalar Flavour Changing Neutral Couplings (SFCNC). We analyse some of the other physical implications of the two models, including an estimate of the enhancement of the Baryon Asymmetry of the Universe provided by the new sources of CP violation, and a discussion of the strength of their tree-level SFCNC.  
  Address [Alves, Joao M.; Branco, Gustavo C.; Nebot, Miguel] Univ Lisboa UL, Inst Super Tecn IST, Dept Fis, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: j.magalhaes.alves@tecnico.ulisboa.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000561119300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4503  
Permanent link to this record
 

 
Author Amerio, A.; Cuoco, A.; Fornengo, N. url  doi
openurl 
  Title (up) Extracting the gamma-ray source-count distribution below the Fermi-LAT detection limit with deep learning Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 029 - 39pp  
  Keywords gamma ray theory; Machine learning  
  Abstract We reconstruct the extra-galactic gamma-ray source-count distribution, or dN/dS, of resolved and unresolved sources by adopting machine learning techniques. Specifically, we train a convolutional neural network on synthetic 2-dimensional sky-maps, which are built by varying parameters of underlying source-counts models and incorporate the FermiLAT instrumental response functions. The trained neural network is then applied to the Fermi-LAT data, from which we estimate the source count distribution down to flux levels a factor of 50 below the Fermi-LAT threshold. We perform our analysis using 14 years of data collected in the (1, 10) GeV energy range. The results we obtain show a source count distribution which, in the resolved regime, is in excellent agreement with the one derived from cataloged sources, and then extends as dN/dS " S-2 in the unresolved regime, down to fluxes of 5 center dot 10-12 cm-2 s-1. The neural network architecture and the devised methodology have the flexibility to enable future analyses to study the energy dependence of the source-count distribution.  
  Address [Amerio, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: aurelio.amerio@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001097055700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5785  
Permanent link to this record
 

 
Author BABAR Collaboration (Lees, J.P. et al); Martinez-Vidal, F.; Oyanguren, A. url  doi
openurl 
  Title (up) Extraction of form Factors from a Four-Dimensional Angular Analysis of (B)over-bar -> D*l(-)(nu)over-bar(l) Type Journal Article
  Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 123 Issue 9 Pages 091801 - 8pp  
  Keywords  
  Abstract An angular analysis of the decay (B) over bar -> D*l(-)(nu) over bar (l), l is an element of {e, mu}, is reported using the full e(+) e(-) collision data set collected by the BABAR experiment at the Upsilon(4S) resonance. One B meson from the Upsilon(4S) -> B (B) over bar decay is fully reconstructed in a hadronic decay mode, which constrains the kinematics and provides a determination of the neutrino momentum vector. The kinematics of the semileptonic decay is described by the dilepton mass squared, q(2), and three angles. The first unbinned fit to the full four-dimensional decay rate in the standard model is performed in the so-called Boyd-Grinstein-Lebed approach, which employs a generic q(2) parametrization of the underlying form factors based on crossing symmetry, analyticity, and QCD dispersion relations for the amplitudes. A fit using the more model-dependent Caprini-Lellouch-Neubert (CLN) approach is performed as well. Our form factor shapes show deviations from previous fits based on the CLN parametrization. The latest form factors also provide an updated prediction for the branching fraction ratio R(D*) B((B) over bar -> D* tau(-)(nu) over bar (tau)) /B((B) over bar -> D*l(-)(nu) over bar (l)) = 0.253 +/- 0.005. Finally, using the well-measured branching fraction for the (B) over bar -> D*l(-)(nu) over bar (l) decay, a value of vertical bar V-cb vertical bar = (38.36 +/- 0.90) x 10(-3) is obtained that is consistent with the current world average for exclusive (B) over bar -> D(*)l(-)(nu) over bar (l) decays and remains in tension with the determination from inclusive semileptonic B decays to final states with charm.  
  Address [Lees, J. P.; Poireau, V; Tisserand, V] Univ Savoie, CNRS, IN2P3, LAPP, F-74941 Annecy Le Vieux, France  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000483048500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4123  
Permanent link to this record
 

 
Author Masud, M.; Bishai, M.; Mehta, P. url  doi
openurl 
  Title (up) Extricating New Physics Scenarios at DUNE with Higher Energy Beams Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue Pages 352 - 9pp  
  Keywords  
  Abstract The proposed Deep Underground Neutrino Experiment (DUNE) utilizes a wide-band on-axis tunable muon-(anti) neutrino beam with a baseline of 1300 km to search for CP violation with high precision. Given the long baseline, DUNE is also sensitive to effects due to matter induced non-standard neutrino interactions (NSI) which can interfere with the standard three-flavor oscillation paradigm. Hence it is desirable to design strategies to disentangle effects due to NSI from standard oscillations. In this article, we exploit the tunability of the DUNE neutrino beam over a wide-range of energies to devise an experimental strategy for separating oscillation effects due to NSI from the standard three-flavor oscillation scenario. Using chi(2) analysis, we obtain an optimal combination of beam tunes and distribution of run times in neutrino and anti-neutrino modes that would enable DUNE to isolate new physics scenarios from the standard. We can distinguish scenarios at 3 sigma (5 sigma) level for almost all (similar to 50%) values of delta. To the best of our knowledge, our strategy is entirely new and has not been reported elsewhere.  
  Address [Masud, Mehedi] Univ Valencia, CSIC, Inst Fis Corpuscular, Astroparticle & High Energy Phys Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2E, E-46980 Valencia, Spain, Email: masud@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456392400033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3891  
Permanent link to this record
 

 
Author Schiavone, T.; Montani, G.; Bombacigno, F. url  doi
openurl 
  Title (up) f(R) gravity in the Jordan frame as a paradigm for the Hubble tension Type Journal Article
  Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 522 Issue 1 Pages L72-L77  
  Keywords supernovae: general; galaxies: distances and redshifts; cosmological parameters; dark energy; cosmology: theory  
  Abstract We analyse the f(R) gravity in the so-called Jordan frame, as implemented to the isotropic Universe dynamics. The goal of the present study is to show that according to recent data analyses of the supernovae Ia Pantheon sample, it is possible to account for an effective redshift dependence of the Hubble constant. This is achieved via the dynamics of a non-minimally coupled scalar field, as it emerges in the f(R) gravity. We face the question both from an analytical and purely numerical point of view, following the same technical paradigm. We arrive to establish that the expected decay of the Hubble constant with the redshift z is ensured by a form of the scalar field potential, which remains essentially constant for z less than or similar to 0.3, independently if this request is made a priori, as in the analytical approach, or obtained a posteriori, when the numerical procedure is addressed. Thus, we demonstrate that an f(R) dark energy model is able to account for an apparent variation of the Hubble constant due to the rescaling of the Einstein constant by the f(R) scalar mode.  
  Address [Schiavone, Tiziano] Univ Pisa, Dept Phys Fermi, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy, Email: tschiavone@fc.ul.pt  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001066034100015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5672  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Akiot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title (up) Fast b-tagging at the high-level trigger of the ATLAS experiment in LHC Run 3 Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 11 Pages P11006 - 38pp  
  Keywords Trigger algorithms; Trigger concepts and systems (hardware and software)  
  Abstract The ATLAS experiment relies on real-time hadronic jet reconstruction and b-tagging to record fully hadronic events containing b-jets. These algorithms require track reconstruction, which is computationally expensive and could overwhelm the high-level-trigger farm, even at the reduced event rate that passes the ATLAS first stage hardware-based trigger. In LHC Run 3, ATLAS has mitigated these computational demands by introducing a fast neural-network-based b-tagger, which acts as a low-precision filter using input from hadronic jets and tracks. It runs after a hardware trigger and before the remaining high-level-trigger reconstruction. This design relies on the negligible cost of neural-network inference as compared to track reconstruction, and the cost reduction from limiting tracking to specific regions of the detector. In the case of Standard Model HH -> b (b) over barb (b) over bar, a key signature relying on b-jet triggers, the filter lowers the input rate to the remaining high-level trigger by a factor of five at the small cost of reducing the overall signal efficiency by roughly 2%.  
  Address [Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001123791900004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5972  
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M.; Gozzini, R.; Ricolfe-Viala, C.; Lajara, R.; Albiol, F. doi  openurl
  Title (up) Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection Type Journal Article
  Year 2024 Publication Sensors Abbreviated Journal Sensors  
  Volume 24 Issue 7 Pages 2084 - 12pp  
  Keywords time-to-digital converters; neutrino telescopes; silicon photomultipliers; dark noise rate filtering  
  Abstract Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address this issue, it is proposed to use Silicon Photomultipliers and Photomultiplier Tubes together. The Photomultiplier Tube signals serve as a trigger to mitigate the dark count rate, thereby preventing undue saturation of the available bandwidth. This paper presents an investigation into a fast and resource-efficient method for filtering the Silicon Photomultiplier dark count rate. A low-resource and fast coincident filter has been developed, which removes the Silicon Photomultiplier dark count rate by using as a trigger the Photomultiplier Tube input signals. The architecture of the coincidence filter, together with the first results obtained, which validate the effectiveness of this method, is presented.  
  Address [Real, Diego; Calvo, David; Zornoza, Juan de Dios; Manzaneda, Mario; Gozzini, Rebecca; Albiol, Francisco] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001201226600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6063  
Permanent link to this record
 

 
Author Just, O.; Abbar, S.; Wu, M.R.; Tamborra, I.; Janka, H.T.; Capozzi, F. url  doi
openurl 
  Title (up) Fast neutrino conversion in hydrodynamic simulations of neutrino-cooled accretion disks Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 8 Pages 083024 - 24pp  
  Keywords  
  Abstract The outflows from neutrino-cooled black hole accretion disks formed in neutron-star mergers or cores of collapsing stars are expected to be neutron-rich enough to explain a large fraction of elements created by the rapid neutron-capture process, but their precise chemical composition remains elusive. Here, we investigate the role of fast neutrino flavor conversion, motivated by the findings of our post-processing analysis that shows evidence of electron-neutrino lepton-number crossings deep inside the disk, hence suggesting possibly nontrivial effects due to neutrino flavor mixing. We implement a parametric, dynamically self-consistent treatment of fast conversion in time-dependent simulations and examine the impact on the disk and its outflows. By activating the otherwise inefficient, emission of heavy-lepton neutrinos, fast conversions enhance the disk cooling rates and reduce the absorption rates of electron-type neutrinos, causing a reduction of the electron fraction in the disk by 0.03-0.06 and in the ejected material by 0.01-0.03. The rapid neutron-capture process yields are enhanced by typically no more than a factor of two, rendering the overall impact of fast conversions modest. The kilonova is prolonged as a net result of increased lanthanide opacities and enhanced radioactive heating rates. We observe only mild sensitivity to the disk mass, the condition for the onset of flavor conversion, and to the considered cases of flavor mixing. Remarkably, parametric models of flavor mixing that conserve the lepton numbers per family result in an overall smaller impact than models invoking three-flavor equipartition, often assumed in previous works.  
  Address [Just, Oliver] GSI Helmholtzzentrum Schwerionenforsch, Planckstr 1, D-64291 Darmstadt, Germany, Email: o.just@gsi.de;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000810510200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5275  
Permanent link to this record
 

 
Author Torres-Sanchez, P.; Steiger, H.T.J.; Mastinu, P.; Wyss, J.L.; Kayser, L.; Silvestrin, L.; Musacchio-Gonzalez, E.; Stock, M.R.; Dörflinger, D.; Fahrendholz, U.; Prete, G.; Carletto, O.; Oberauer, L.; Porras, I. url  doi
openurl 
  Title (up) Fast neutron production at the LNL Tandem from the 7Li(14N,xn)X reaction Type Journal Article
  Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 4 Pages 372 - 11pp  
  Keywords  
  Abstract Fast neutron beams (E-n>1 MeV) are of relevance for many scientific and industrial applications. This paper explores fast neutron production using a TANDEM accelerator at the Legnaro National Laboratories, via an energetic ion beam (90 MeV N-14) onto a lithium target. The high energy models for nuclear collision of FLUKA foresee large neutron yields for reactions of this kind. The experiment aimed at validating the expected neutron yields from FLUKA simulations, using two separate and independent set-ups: one based on the multi-foil activation technique, and the other on the time of flight technique, by using liquid scintillator detectors. The results of the experiment show clear agreement of the measured spectra with the FLUKA simulations, both in the shape and the magnitude of the neutron flux at the mea-sured positions. The neutron spectrum is centered around the 8 MeV range with mild tails, and a maximum neutron energy spanning up to 50 MeV. These advantageous results provide a starting point in the development of fast neutron beams based on high energy ion beams from medium-sized accelerator facilities  
  Address [Torres-Sanchez, Pablo] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: pablotorres@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001198645600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6107  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva