|   | 
Details
   web
Records
Author Eberhardt, O.; Peñuelas, A.; Pich, A.
Title (down) Global fits in the Aligned Two-Higgs-Doublet model Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 005 - 37pp
Keywords Phenomenology of Field Theories in Higher Dimensions
Abstract We present the results of a global fit to the Aligned Two-Higgs Doublet Model, assuming that there are no new sources of CP violation beyond the quark mixing matrix. We use the most constraining flavour observables, electroweak precision measurements and the available data on Higgs signal strengths and collider searches for heavy scalars, together with the theoretical requirements of perturbativity and positivity of the scalar potential. The combination of all these constraints restricts the values of the scalar masses, the couplings of the scalar potential and the flavour-alignment parameters. The numerical fits have been performed using the open-source HEPfit package.
Address [Eberhardt, Otto; Pich, Antonio] Inst Fis Corpuscular, Parque Cient,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: otto.eberhardt.physics@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000753839400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5114
Permanent link to this record
 

 
Author Becchetti, M.; Bonciani, R.; Cieri, L.; Coro, F.; Ripani, F.
Title (down) Full top-quark mass dependence in diphoton production at NNLO in QCD Type Journal Article
Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 848 Issue Pages 138362 - 7pp
Keywords Collider phenomenology; Diphoton; Top quark; NNLO
Abstract In this paper we consider the diphoton production in hadronic collisions at the next-to-next-to-leading order (NNLO) in perturbative QCD, taking into account for the first time the full top quark mass dependence up to two loops (full NNLO). We show selected numerical distributions, highlighting the kinematic regions where the massive corrections are more significant. We make use of the recently computed two-loop massive amplitudes for diphoton production in the quark annihilation channel. The remaining massive contributions at NNLO are also considered, and we comment on the weight of the different types of contributions to the full and complete result.
Address [Becchetti, Matteo] Univ Torino, Dipartimento Fis, Via Pietro Giuria 1, I-10125 Turin, Italy, Email: matteo.becchetti@unito.it;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001131862200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5873
Permanent link to this record
 

 
Author Llanes Jurado, J.; Rodrigo, G.; Torres Bobadilla, W.J.
Title (down) From Jacobi off-shell currents to integral relations Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 122 - 22pp
Keywords NLO Computations; QCD Phenomenology
Abstract In this paper, we study off-shell currents built from the Jacobi identity of the kinematic numerators of gg -> X with X = ss, q (q) over bar, gg. We find that these currents can be schematically written in terms of three-point interaction Feynman rules. This representation allows for a straightforward understanding of the Colour-Kinematics duality as well as for the construction of the building blocks for the generation of higher-multiplicity tree-level and multi-loop numerators. We also provide one-loop integral relations through the Loop-Tree duality formalism with potential applications and advantages for the computation of relevant physical processes at the Large Hadron Collider. We illustrate these integral relations with the explicit examples of QCD one-loop numerators of gg -> ss.
Address [Llanes Jurado, Jose; Rodrigo, German; Torres Bobadilla, William J.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: jollaju@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000418560700004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3431
Permanent link to this record
 

 
Author Deak, M.
Title (down) Estimation of saturation and coherence effects in the KGBJS equation – a non-linear CCFM equation Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 087 - 18pp
Keywords QCD Phenomenology
Abstract We solve the modified non-linear extension of the CCFM equation – KGBJS equation – numerically for certain initial conditions and compare the resulting dipole amplitudes with those obtained front solving the original CCFM equation and the BFKL and BK equations for the same initial conditions. We improve the low transversal momentum behaviour of the KGBJS equation by a small modification.
Address [Deak, M.] Univ Santiago de Compostela, Fac Fis, Dept Fis Particulas, Santiago De Compostela 15706, Spain, Email: michal.deak@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000323202600087 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1636
Permanent link to this record
 

 
Author Breso-Pla, V.; Falkowski, A.; Gonzalez-Alonso, M.; Monsalvez-Pozo, K.
Title (down) EFT analysis of New Physics at COHERENT Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 074 - 53pp
Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Interactions; SMEFT
Abstract Using an effective field theory approach, we study coherent neutrino scattering on nuclei, in the setup pertinent to the COHERENT experiment. We include non-standard effects both in neutrino production and detection, with an arbitrary flavor structure, with all leading Wilson coefficients simultaneously present, and without assuming factorization in flux times cross section. A concise description of the COHERENT event rate is obtained by introducing three generalized weak charges, which can be associated (in a certain sense) to the production and scattering of nu(e), nu(mu) and (nu) over bar (mu) on the nuclear target. Our results are presented in a convenient form that can be trivially applied to specific New Physics scenarios. In particular, we find that existing COHERENT measurements provide percent level constraints on two combinations of Wilson coefficients. These constraints have a visible impact on the global SMEFT fit, even in the constrained flavor-blind setup. The improvement, which affects certain 4-fermion LLQQ operators, is significantly more important in a flavor-general SMEFT. Our work shows that COHERENT data should be included in electroweak precision studies from now on.
Address [Breso-Pla, Victor; Gonzalez-Alonso, Martin; Monsalvez-Pozo, Kevin] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: vicbreso@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000988320800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5549
Permanent link to this record