|   | 
Details
   web
Records
Author Barenboim, G.; Ternes, C.A.; Tortola, M.
Title (down) CPT and CP, an entangled couple Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 155 - 12pp
Keywords CP violation; Neutrino Physics; Beyond Standard Model
Abstract Even though it is undoubtedly very appealing to interpret the latest T2K results as evidence of CP violation, this claim assumes CPT conservation in the neutrino sector to an extent that has not been tested yet. As we will show, T2K results are not robust against a CPT-violating explanation. On the contrary, a CPT-violating CP-conserving scenario is in perfect agreement with current neutrino oscillation data. Therefore, to elucidate whether T2K results imply CP or CPT violation is of utter importance. We show that, even after combining with data from NO nu A and from reactor experiments, no claims about CP violation can be made. Finally, we update the bounds on CPT violation in the neutrino sector.
Address [Barenboim, Gabriela; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000555932400005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4492
Permanent link to this record
 

 
Author Barenboim, G.; Salvado, J.
Title (down) Cosmology and CPT violating neutrinos Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 11 Pages 766 - 18pp
Keywords
Abstract The combination charge conjugation-parity-time reversal (CPT) is a fundamental symmetry in our current understanding of nature. As such, testing CPT violation is a strongly motivated path to explore new physics. In this paper we study CPT violation in the neutrino sector, giving for the first time a bound, for a fundamental particle, in the CPT violating particle-antiparticle gravitational mass difference. We argue that cosmology is nowadays the only data sensitive to CPT violation for the neutrino-antineutrino mass splitting and we use the latest data release from Planck combined with the current baryonic-acoustic-oscillation measurement to perform a full cosmological analysis. To show the potential of the future experiments we also show the results for Euclid, a next generation large scale structure experiment.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000415376100002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3378
Permanent link to this record
 

 
Author Barenboim, G.; Denton, P.B.; Oldengott, I.M.
Title (down) Constraints on inflation with an extended neutrino sector Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 99 Issue 8 Pages 083515 - 9pp
Keywords
Abstract Constraints on inflationary models typically assume only the standard models of cosmology and particle physics. By extending the neutrino sector to include a new interaction with a light scalar mediator (m(phi) similar to MeV), it is possible to relax these constraints, in particular via opening up regions of the parameter space of the spectral index n(s). These new interactions can be probed at IceCube via interactions of astrophysical neutrinos with the cosmic neutrino background for nearly all of the relevant parameter space.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000464746300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3980
Permanent link to this record
 

 
Author Barenboim, G.; Bosch, C.
Title (down) Composite states of two right-handed neutrinos Type Journal Article
Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 94 Issue 11 Pages 116019 - 10pp
Keywords
Abstract In this work, we develop a model for Higgs-like composites based on two generations of right-handed neutrinos that condense. We analyze the spontaneous symmetry breaking of the theory with two explicit breakings, setting the different scales of the model and obtaining massive bosons as a result. Finally, we calculate the gravitational wave imprint left by the phase transition associated with the symmetry breaking of a generic potential dictated by the symmetries of the composites.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000391016400017 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2908
Permanent link to this record
 

 
Author Barenboim, G.; Chun, E.J.; Lee, H.M.
Title (down) Coleman-Weinberg inflation in light of Planck Type Journal Article
Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 730 Issue Pages 81-88
Keywords
Abstract We revisit a single field inflationary model based on Coleman-Weinberg potentials. We show that in small field Coleman-Weinberg inflation, the observed amplitude of perturbations needs an extremely small quartic coupling of the inflaton, which might be a signature of radiative origin. However, the spectral index obtained in a standard cosmological scenario turns out to be outside the 2 sigma region of the Planck data. When a non-standard cosmological framework is invoked, such as brane-world cosmology in the Randall-Sundrum model, the spectral index can be made consistent with Planck data within la, courtesy of the modification in the evolution of the Hubble parameter in such a scheme. We also show that the required inflaton quartic coupling as well as a phenomenologically viable B – L symmetry breaking together with a natural electroweak symmetry breaking can arise dynamically in a generalized B – L extension of the Standard Model where the full potential is assumed to vanish at a high scale.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000333506400016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1741
Permanent link to this record