|   | 
Details
   web
Records
Author Aguilar, A.C.; Papavassiliou, J.
Title (down) Chiral symmetry breaking with lattice propagators Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 1 Pages 014013 - 17pp
Keywords
Abstract We study chiral symmetry breaking using the standard gap equation, supplemented with the infrared-finite gluon propagator and ghost dressing function obtained from large-volume lattice simulations. One of the most important ingredients of this analysis is the non-Abelian quark-gluon vertex, which controls the way the ghost sector enters into the gap equation. Specifically, this vertex introduces a numerically crucial dependence on the ghost dressing function and the quark-ghost scattering amplitude. This latter quantity satisfies its own, previously unexplored, dynamical equation, which may be decomposed into individual integral equations for its various form factors. In particular, the scalar form factor is obtained from an approximate version of the “one-loop dressed” integral equation, and its numerical impact turns out to be rather considerable. The detailed numerical analysis of the resulting gap equation reveals that the constituent quark mass obtained is about 300 MeV, while fermions in the adjoint representation acquire a mass in the range of (750-962) MeV.
Address [Aguilar, A. C.] Fed Univ ABC, CCNH, BR-09210170 Santo Andre, Brazil, Email: Arlene.Aguilar@ufabc.edu.br
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286765100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 584
Permanent link to this record
 

 
Author Binosi, D.; Chang, L.; Papavassiliou, J.; Roberts, C.D.
Title (down) Bridging a gap between continuum-QCD and ab initio predictions of hadron observables Type Journal Article
Year 2015 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 742 Issue Pages 183-188
Keywords Dyson-Schwinger equations; Confinement; Dynamical chiral symmetry breaking; Fragmentation; Gribov copies
Abstract Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson-Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initioprediction of bound-state properties.
Address [Binosi, Daniele] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: cdroberts@anl.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000350555900026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2156
Permanent link to this record
 

 
Author Binosi, D.; Ibañez, D.; Papavassiliou, J.
Title (down) All-order equation of the effective gluon mass Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 8 Pages 085033 - 21pp
Keywords
Abstract We present the general derivation of the full nonperturbative equation that governs the momentum evolution of the dynamically generated gluon mass, in the Landau gauge. The entire construction hinges crucially on the inclusion of longitudinally coupled vertices containing massless poles of nonperturbative origin, which preserve the form of the fundamental Slavnov-Taylor identities of the theory. The mass equation is obtained from a previously unexplored version of the Schwinger-Dyson equation for the gluon propagator, particular to the pinch technique-background field method formalism, which involves a reduced number of two-loop dressed diagrams, thus simplifying the calculational task considerably. The two-loop contributions turn out to be of paramount importance, modifying the qualitative features of the full mass equation and enabling the emergence of physically meaningful solutions. Specifically, the resulting homogeneous integral equation is solved numerically, subject to certain approximations, for the entire range of physical momenta, yielding positive-definite and monotonically decreasing gluon masses.
Address [Binosi, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, Trento, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000309999700007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1196
Permanent link to this record