toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title (up) Precision measurement of forward Z boson production in proton-proton collisions at root s=13 TeV Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 026 - 57pp  
  Keywords Electroweak Interaction; Forward Physics; Hadron-Hadron Scattering; Particle and Resonance Production  
  Abstract A precision measurement of the Z boson production cross-section at root s = 13 TeV in the forward region is presented, using pp collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb(-1). The production cross-section is measured using Z -> mu(+)mu(-) events within the fiducial region defined as pseudorapidity 2.0 < eta < 4.5 and transverse momentum p(T) > 20 GeV/c for both muons and dimuon invariant mass 60 < M-mu μ< 120 GeV/c(2). The integrated cross-section is determined to be sigma(Z -> mu(+)mu(-)) = 196.4 +/- 0.2 +/- 1.6 +/- 3.9 pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.  
  Address [de Souza Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: hang.yin@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000825333400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5299  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title (up) Precision measurement of the B-c(+) meson mass Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 123 - 21pp  
  Keywords B physics; Hadron-Hadron scattering (experiments); QCD; Spectroscopy  
  Abstract A precision measurement of the B-c(+) meson mass is performed using proton- proton collision data collected with the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to a total integrated luminosity of 9.0 fb(-1). The B-c(+) mesons are reconstructed via the decays B-c(+)-> J/psi pi(+), B-c(+)-> J/psi pi(+)pi(-)pi(+), B-c(+)-> J/psi pp<overbar>pi(+), B-c(+)-> J/psi D-s(+), B-c(+)-> J/psi (DK+)-K-0 and B-c(+)-> B-s(0)pi(+). Combining the results of the individual decay channels, the B-c(+) mass is measured to be 6274.47 +/- 0.27 (stat) +/- 0.17 (syst) MeV/c(2). This is the most precise measurement of the B-c(+) mass to date. The difference between the B-c(+) and B-s(0) meson masses is measured to be 907.75 +/- 0.37 (stat) +/- 0.27 (syst) MeV/c(2).  
  Address [Baptista Leite, J.; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: yanting.fan@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000553446200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4482  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title (up) Precision measurement of the Xi(++)(cc) mass Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 049 - 18pp  
  Keywords Charm physics; Hadron-Hadron scattering (experiments); QCD; Spectroscopy  
  Abstract A measurement of the Xi cc++ candidates are reconstructed via the decay modes Xi cc++->?c+K-pi+pi+ and Xi cc++->Xi c+pi+. The result, 3621.55 +/- 0.23 (stat) +/- 0.30 (syst) MeV/c(2), is the most precise measurement of the Xi cc++ mass to date.  
  Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Dos Reis, A. C.; Gomes, A.; Massafferri, A.; Soares Lavra, L.; Torres Machado, D.] CBPF, Rio De Janeiro, Brazil, Email: haojie.ni@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513450500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4299  
Permanent link to this record
 

 
Author Coloma, P.; Donini, A.; Fernandez-Martinez, E.; Hernandez, P. url  doi
openurl 
  Title (up) Precision on leptonic mixing parameters at future neutrino oscillation experiments Type Journal Article
  Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 073 - 27pp  
  Keywords Neutrino Physics; CP violation; Standard Model  
  Abstract We perform a comparison of the different future neutrino oscillation experiments based on the achievable precision in the determination of the fundamental parameters theta(13) and the CP phase, delta, assuming that theta(13) is in the range indicated by the recent Daya Bay measurement. We study the non-trivial dependence of the error on delta on its true value. When matter effects are small, the largest error is found at the points where CP violation is maximal, and the smallest at the CP conserving points. The situation is different when matter effects are sizable. As a result of this effect, the comparison of the physics reach of different experiments on the basis of the CP discovery potential, as usually done, can be misleading. We have compared various proposed super-beam, beta-beam and neutrino factory setups on the basis of the relative precision of theta(13) and the error on delta. Neutrino factories, both high-energy or low-energy, outperform alternative beam technologies. An ultimate precision on theta(13) below 3% and an error on delta of <= 7 degrees at 1 sigma (1 d.o.f.) can be obtained at a neutrino factory.  
  Address [Coloma, P.] Virginia Tech, Dept Phys, Ctr Neutrino Phys, Blacksburg, VA 24061 USA, Email: coloma@vt.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000306416500074 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1141  
Permanent link to this record
 

 
Author Sandner, S.; Hernandez, P.; Lopez-Pavon, J.; Rius, N. url  doi
openurl 
  Title (up) Predicting the baryon asymmetry with degenerate right-handed neutrinos Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 153 - 37pp  
  Keywords Baryo-and Leptogenesis; Sterile or Heavy Neutrinos; Early Universe Particle Physics  
  Abstract We consider the generation of a baryon asymmetry in an extension of the Standard Model with two singlet Majorana fermions that are degenerate above the electroweak phase transition. The model can explain neutrino masses as well as the observed matter-antimatter asymmetry, for masses of the heavy singlets below the electroweak scale. The only physical CP violating phases in the model are those in the PMNS mixing matrix, i.e. the Dirac phase and a Majorana phase that enter light neutrino observables. We present an accurate analytic approximation for the baryon asymmetry in terms of CP flavour invariants, and derive the correlations with neutrino observables. We demonstrate that the measurement of CP violation in neutrino oscillations as well as the mixings of the heavy neutral leptons with the electron, muon and tau flavours suffice to pin down the matter-antimatter asymmetry from laboratory measurements.  
  Address [Sandner, S.] Univ Valencia, Inst Fis Corpuscular, Edificio Inst Invest,Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: stefan.sandner@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001111979900002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5869  
Permanent link to this record
 

 
Author Carcamo Hernandez, A.E.; Kovalenko, S.; Valle, J.W.F.; Vaquera-Araujo, C.A. url  doi
openurl 
  Title (up) Predictive Pati-Salam theory of fermion masses and mixing Type Journal Article
  Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 118 - 25pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We propose a Pati-Salam extension of the standard model incorporating a flavor symmetry based on the Delta (27) group. The theory realizes a realistic Froggatt-Nielsen picture of quark mixing and a predictive pattern of neutrino oscillations. We find that, for normal neutrino mass ordering, the atmospheric angle must lie in the higher octant, CP must be violated in oscillations, and there is a lower bound for the 0 nu beta beta decay rate. For the case of inverted mass ordering, we find that the lower atmospheric octant is preferred, and that CP can be conserved in oscillations. Neutrino masses arise from a low-scale seesaw mechanism, whose messengers can be produced by a Z' portal at the LHC.  
  Address [Carcamo Hernandez, A. E.; Kovalenko, Sergey] Univ Tecn Federico Santa Maria, Casilla 110-V, Valparaiso, Chile, Email: antonio.carcamo@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406883100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3237  
Permanent link to this record
 

 
Author Ghoshal, A.; Gouttenoire, Y.; Heurtier, L.; Simakachorn, P. url  doi
openurl 
  Title (up) Primordial black hole archaeology with gravitational waves from cosmic strings Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 196 - 43pp  
  Keywords Cosmology of Theories BSM; Early Universe Particle Physics; Phase Transitions in the Early Universe; Specific BSM Phenomenology  
  Abstract Light primordial black holes (PBHs) with masses smaller than 10(9) g (10(-24) M-circle dot) evaporate before the onset of Big-Bang nucleosynthesis, rendering their detection rather challenging. If efficiently produced, they may have dominated the universe energy density. We study how such an early matter-dominated era can be probed successfully using gravitational waves (GW) emitted by local and global cosmic strings. While previous studies showed that a matter era generates a single-step suppression of the GW spectrum, we instead find a double-step suppression for local-string GW whose spectral shape provides information on the duration of the matter era. The presence of the two steps in the GW spectrum originates from GW being produced through two events separated in time: loop formation and loop decay, taking place either before or after the matter era. The second step – called the knee – is a novel feature which is universal to any early matter-dominated era and is not only specific to PBHs. Detecting GWs from cosmic strings with LISA, ET, or BBO would set constraints on PBHs with masses between 10(6) and 10(9) g for local strings with tension G μ= 10(-11), and PBHs masses between 10(4) and 10(9) g for global strings with symmetry-breaking scale eta = 10(15) GeV. Effects from the spin of PBHs are discussed.  
  Address [Ghoshal, Anish] Univ Warsaw, Inst Theoret Phys, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland, Email: anish.ghoshal@fuw.edu.pl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001188227600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5994  
Permanent link to this record
 

 
Author Alcaide, J.; Banerjee, S.; Chala, M.; Titov, A. url  doi
openurl 
  Title (up) Probes of the Standard Model effective field theory extended with a right-handed neutrino Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 031 - 18pp  
  Keywords Beyond Standard Model; Effective Field Theories; Neutrino Physics  
  Abstract If neutrinos are Dirac particles and, as suggested by the so far null LHC results, any new physics lies at energies well above the electroweak scale, the Standard Model effective field theory has to be extended with operators involving the right-handed neutrinos. In this paper, we study this effective field theory and set constraints on the different dimension-six interactions. To that aim, we use LHC searches for associated production of light (and tau) leptons with missing energy, monojet searches, as well as pion and tau decays. Our bounds are generally above the TeV for order one couplings. One particular exception is given by operators involving top quarks. These provide new signals in top decays not yet studied at colliders. Thus, we also design an LHC analysis to explore these signatures in the tt production. Our results are also valid if the right-handed neutrinos are Majorana and long-lived.  
  Address [Alcaide, Julien] Univ Valencia, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: julien.alcaide@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000482463900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4120  
Permanent link to this record
 

 
Author Bernabeu, J.; Di Domenico, A.; Villanueva-Perez, P. url  doi
openurl 
  Title (up) Probing CPT in transitions with entangled neutral kaons Type Journal Article
  Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 139 - 19pp  
  Keywords Discrete and Finite Symmetries; Kaon Physics; CP violation  
  Abstract In this paper we present a novel CPT symmetry test in the neutral kaon system based, for the first time, on the direct comparison of the probabilities of a transition and its CPT reverse. The required interchange of in <-> out states for a given process is obtained exploiting the Einstein-Podolsky-Rosen correlations of neutral kaon pairs produced at a phi-factory. The observable quantities have been constructed by selecting the two semileptonic decays for flavour tag, the pi and 3 pi(0) decays for CP tag and the time orderings of the decay pairs. The interpretation in terms of the standard Weisskopf-Wigner approach to this system, directly connects CPT violation in these observables to the violating R delta parameter in the mass matrix of K-0 – (K) over bar (0), a genuine CPT violating effect independent of Delta Gamma and not requiring the decay as an essential ingredient. Possible spurious effects induced by CP violation in the decay and/or a violation of the Delta S = Delta Q rule have been shown to be well under control. The proposed test is thus fully robust, and might shed light on possible new CPT violating mechanisms, or further improve the precision of the present experimental limits. It could be implemented at the DA Phi NE facility in Frascati, where the KLOE-2 experiment might reach a statistical sensitivity of O (10(-3)) on the newly proposed observable quantities.  
  Address [Bernabeu, J.; Villanueva-Perez, P.] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: jose.bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000363478100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2420  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aitllo, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Thakore, T.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (up) Probing invisible neutrino decay with KM3NeT/ORCA Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 090 - 30pp  
  Keywords Beyond Standard Model; Neutrino Detectors and Telescopes (experiments); Oscillation  
  Abstract In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state v3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1/alpha 3 = T3/m3 < 180 ps/eV at 90% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for theta(23), Delta m(31)(2) and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] INFN, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: victor.carretero@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000992450100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5564  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva