|   | 
Details
   web
Records
Author Perez-Cerdan, A.B.; Rubio, B.; Gelletly, W.; Algora, A.; Agramunt, J.; Nacher, E.; Tain, J.L.; Sarriguren, P.; Fraile, L.M.; Borge, M.J.G.; Caballero, L.; Dessagne, P.; Jungclaus, A.; Heitz, G.; Marechal, F.; Poirier, E.; Salsac, M.D.; Tengblad, O.
Title (up) Deformation of Sr and Rb isotopes close to the N = Z line via beta-decay studies using the total absorption technique Type Journal Article
Year 2013 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 88 Issue 1 Pages 014324 - 15pp
Keywords
Abstract A study of the Gamow-Teller strength distributions B(GT) in the beta decay of Sr-78 and Rb-76,Rb-78 has been made using a total absorption spectrometer (TAS). Following the success in deducing the sign of the deformation for Sr-76, a similar approach is adopted for Sr-78 based on a comparison of the measured B(GT) with quasiparticle random-phase approximation calculations. This work confirms its previously expected prolate deformation in the ground state. Conclusions about the structure of the odd-odd Rb-76,Rb-78 isotopes have been drawn based on their measured B(GT) distributions.
Address [Perez-Cerdan, A. B.; Rubio, B.; Algora, A.; Agramunt, J.; Nacher, E.; Tain, J. L.; Caballero, L.] CSIC Univ Valencia, IFIC, E-46071 Valencia, Spain, Email: berta.rubio@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000322531400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1522
Permanent link to this record
 

 
Author DEPFET collaboration (Alonso, O. et al); Boronat, M.; Esperante-Pereira, D.; Fuster, J.; Garcia, I.G.; Lacasta, C.; Oyanguren, A.; Ruiz, P.; Timon, G.; Vos, M.
Title (up) DEPFET Active Pixel Detectors for a Future Linear e(+)e(-) Collider Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue 2 Pages 1457-1465
Keywords Active pixel sensor; DEPFET; linear collider; vertex detector
Abstract The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 μm. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling, and services. In this paper, the status of the DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear e(+)e(-) collider.
Address [Alonso, O.; Casanova, R.; Dieguez, A.] Univ Barcelona, E-08028 Barcelona, Spain, Email: marcel.vos@ific.uv.es
Corporate Author Thesis
Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000320856800029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1489
Permanent link to this record
 

 
Author NEXT Collaboration (Alvarez, V. et al); Ball, M.; Carcel, S.; Cervera-Villanueva, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.
Title (up) Design and characterization of the SiPM tracking system of NEXT-DEMO, a demonstrator prototype of the NEXT-100 experiment Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages T05002 - 18pp
Keywords Time projection Chambers (TPC); Gaseous imaging and tracking detectors; Photon detectors for UV; visible and IR photons (solid-state); Particle tracking detectors (Solid-state detectors)
Abstract NEXT-100 experiment aims at searching the neutrinoless double-beta decay of the Xe-136 isotope using a TPC filled with a 100 kg of high-pressure gaseous xenon, with 90% isotopic enrichment. The experiment will take place at the Laboratorio Subterraneo de Canfranc (LSC), Spain. NEXT-100 uses electroluminescence (EL) technology for energy measurement with a resolution better than 1% FWHM. The gaseous xenon in the TPC additionally allows the tracks of the two beta particles to be recorded, which are expected to have a length of up to 30 cm at 10 bar pressure. The ability to record the topological signature of the beta beta 0 nu events provides a powerful background rejection factor for the beta beta experiment. In this paper, we present a novel 3D imaging concept using SiPMs coated with tetraphenyl butadiene (TPB) for the EL read out and its first implementation in NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment. The design and the first characterization measurements of the NEXT-DEMO SiPM tracking system are presented. The SiPM response uniformity over the tracking plane drawn from its gain map is shown to be better than 4%. An automated active control system for the stabilization of the SiPMs gain was developed, based on the voltage supply compensation of the gain drifts. The gain is shown to be stabilized within 0.2% relative variation around its nominal value, provided by Hamamatsu, in a temperature range of 10 degrees C. The noise level from the electronics and the SiPM dark noise is shown to lay typically below the level of 10 photoelectrons (pe) in the ADC. Hence, a detection threshold at 10 pe is set for the acquisition of the tracking signals. The ADC full dynamic range (4096 channels) is shown to be adequate for signal levels of up to 200 pe/mu s, which enables recording most of the tracking signals.
Address [Alvarez, V.; Ball, M.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gil, A.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: gomez@mail.cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000320726000037 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1514
Permanent link to this record
 

 
Author Egea, F.J. et al; Gadea, A.; Barrientos, D.; Huyuk, T.
Title (up) Design and Test of a High-Speed Flash ADC Mezzanine Card for High-Resolution and Timing Performance in Nuclear Structure Experiments Type Journal Article
Year 2013 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.
Volume 60 Issue 5 Pages 3526-3531
Keywords
Abstract This work describes new electronics for the EX-OGAM2 (HP-Ge detector array) and NEDA (BC501A-based neutron detector array). A new digitizing card with high resolution has been designed for gamma-ray and neutron spectroscopy experiments. The higher bandwidth requirement of the NEDA signals, together with the necessity for accuracy, require a high sampling rate in order to preserve the shape for real-time Pulse Shape Analysis (PSA). The PSA is of paramount importance for the NEDA to discriminate between neutrons and gamma-ray signals. Both high resolution and high speed parameters are often difficult to achieve in a single electronic unit. These constraints, together with the need to build new digitizing electronics to improve performance and flexibility of signal analysis in nuclear physics experiments, led to the development a new FADC mezzanine card. In this work, the design and development are described, including the characterization procedure and the preliminary measurement results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9499 ISBN Medium
Area Expedition Conference
Notes WOS:000325827700015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1613
Permanent link to this record
 

 
Author KM3NeT Collaboration (Adrian-Martinez, S. et al); Aguilar, J.A.; Bigongiari, C.; Calvo Diaz-Aldagalan, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Ruiz-Rivas, J.; Salesa, F.; Toscano, S.; Urbano, F.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title (up) Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles Type Journal Article
Year 2013 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 42 Issue Pages 7-14
Keywords Neutrino telescope; Fermi Bubbles; KM3NeT
Abstract A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50 above and below the Galactic centre (the “Fermi bubbles”). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km(3) neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km(3) of instrumented volume. The effect of a possible lower cutoff is also considered.
Address [Craig, J.; Jamieson, A.; Priede, I. G.] Univ Aberdeen, Aberdeen AB9 1FX, Scotland, Email: coniglione@lns.inf
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000315371900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1352
Permanent link to this record