|   | 
Details
   web
Records
Author Escrihuela, F.J.; Tortola, M.; Valle, J.W.F.; Miranda, O.G.
Title (up) Global constraints on muon-neutrino nonstandard interactions Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 9 Pages 093002 - 8pp
Keywords
Abstract The search for new interactions of neutrinos beyond those of the standard model may help to elucidate the mechanism responsible for neutrino masses. Here, we combine existing accelerator neutrino data with restrictions coming from a recent atmospheric neutrino data analysis in order to lift parameter degeneracies and improve limits on new interactions of muon neutrinos with quarks. In particular, we reconsider the results of the E-815 experiment at Fermilab (NuTeV) in view of a new evaluation of its systematic uncertainties. We find that, although constraints for muon neutrinos are better than those applicable to tau or electron neutrinos, they lie at the few X 10(-2) level, not as strong as previously believed. We briefly discuss prospects for further improvement.
Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Politecn Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: franesfe@alumni.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000290230200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 616
Permanent link to this record
 

 
Author Schwetz, T.; Tortola, M.; Valle, J.W.F.
Title (up) Global neutrino data and recent reactor fluxes: the status of three-flavour oscillation parameters Type Journal Article
Year 2011 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 13 Issue Pages 063004 - 15pp
Keywords
Abstract We present the results of a global neutrino oscillation data analysis within the three-flavour framework. We include the latest results from the MINOS long-baseline experiment (including electron neutrino appearance and anti-neutrino data), updating all relevant solar (Super-Kamiokande (SK) II + III), atmospheric (SK I + II + III) and reactor (KamLAND) data. Furthermore, we include a recent re-calculation of the anti-neutrino fluxes emitted from nuclear reactors. These results have important consequences for the analysis of reactor experiments and in particular for the status of the mixing angle theta(13). In our recommended default analysis, we find from the global fit that the hint for nonzero theta(13) remains weak, at 1.8 sigma for both neutrino mass hierarchy schemes. However, we discuss in detail the dependence of these results on assumptions regarding the reactor neutrino analysis.
Address [Schwetz, Thomas] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany, Email: schwetz@mpi-hd.mpg.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes ISI:000292137500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 666
Permanent link to this record
 

 
Author Forero, D.V.; Tortola, M.; Valle, J.W.F.
Title (up) Global status of neutrino oscillation parameters after Neutrino-2012 Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 7 Pages 073012 - 8pp
Keywords
Abstract Here we update the global fit of neutrino oscillations in Refs. [T. Schwetz, M. Tortola, and J. W. F. Valle, New J. Phys. 13, 063004 (2011); T. Schwetz, M. Tortola, and J. W. F. Valle, New J. Phys. 13, 109401 (2011)] including the recent measurements of reactor antineutrino disappearance reported by the Double Chooz, Daya Bay, and RENO experiments, together with latest MINOS and T2K appearance and disappearance results, as presented at the Neutrino-2012 conference. We find that the preferred global fit value of theta(13) is quite large: sin(2)theta(13) similar or equal to 0.025 for normal and inverted neutrino mass ordering, with theta(13) = 0 now excluded at more than 10 sigma. The impact of the new theta(13) measurements over the other neutrino oscillation parameters is discussed as well as the role of the new long-baseline neutrino data and the atmospheric neutrino analysis in the determination of a non-maximal atmospheric angle theta(23).
Address [Forero, D. V.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000309999100003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1193
Permanent link to this record
 

 
Author Addazi, A.; Marciano, A.; Morais, A.P.; Pasechnik, R.; Srivastava, R.; Valle, J.W.F.
Title (up) Gravitational footprints of massive neutrinos and lepton number breaking Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 807 Issue Pages 135577 - 8pp
Keywords
Abstract We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both “high-scale” as well as “low-scale” variants, with either explicit or spontaneously broken lepton number symmetry U(1)(L), in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken U(1)(L), and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detestability of GWs in present or near future measurements. Nevertheless, we found that, in the majoron-like seesaw scheme with spontaneously broken U(1)(L), at finite temperatures, one can have strong FOPTs and non-trivial primordial GW spectra which can fall well within the frequency and amplitude sensitivity of upcoming experiments, including LISA, BBO and u-DECIGO. However, GWs observability clashes with invisible Higgs decay constraints from the LHC. A simple and consistent fix is to assume the majoron-like mass to lie above the Higgs-decay kinematical threshold. We also found that the majoron-like variant of the low-scale seesaw mechanism implies a different GW spectrum than the one expected in the high-scale seesaw. This feature will be testable in future experiments. Our analysis shows that GWs can provide a new and complementary portal to test the neutrino mass generation mechanism.
Address [Addazi, Andrea; Marciano, Antonino] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China, Email: andrea.addazi@lngs.infn.it;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000571765700055 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4543
Permanent link to this record
 

 
Author Restrepo, D.; Taoso, M.; Valle, J.W.F.; Zapata, O.
Title (up) Gravitino dark matter and neutrino masses with bilinear R-parity violation Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 2 Pages 023523 - 7pp
Keywords
Abstract Bilinear R-parity violation provides an attractive origin for neutrino masses and mixings. In such schemes the gravitino is a viable decaying dark matter particle whose R-parity violating decays lead to monochromatic photons with rates accessible to astrophysical observations. We determine the parameter region allowed by gamma-ray line searches, dark matter relic abundance, and neutrino oscillation data, obtaining a limit on the gravitino mass m((G) over tilde) less than or similar to 1-10 GeV corresponding to a relatively low reheat temperature T-R less than or similar to few x 10(7)-10(8) GeV. Neutrino mass and mixing parameters may be reconstructed at accelerator experiments like the Large Hadron Collider.
Address [Restrepo, Diego] Univ Antioquia, Inst Fis, Medellin 1226, Colombia, Email: restrepo@udea.edu.co
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000299932700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 899
Permanent link to this record