|   | 
Details
   web
Records
Author de Vega, I.; Bañuls, M.C.; Perez, A.
Title (up) Effects of dissipation on an adiabatic quantum search algorithm Type Journal Article
Year 2010 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 12 Issue Pages 123010 - 19pp
Keywords
Abstract According to recent studies (Amin et al 2008 Phys. Rev. Lett. 100 060503), the effect of a thermal bath may improve the performance of a quantum adiabatic search algorithm. In this paper, we compare the effects of such a thermal environment on the algorithm performance with those of a structured environment similar to the one encountered in systems coupled to an electromagnetic field that exists within a photonic crystal. Whereas for all the parameter regimes explored here, the algorithm performance is worsened by contact with a thermal environment, the picture appears to be different when one considers a structured environment. In this case we show that by tuning the environment parameters to certain regimes, the algorithm performance can actually be improved with respect to the closed system case. Additionally, the relevance of considering the dissipation rates as complex quantities is discussed in both cases. More specifically, we find that the imaginary part of the rates cannot be neglected with the usual argument that it simply amounts to an energy shift and in fact influences crucially the system dynamics.
Address [de Vega, Ines] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany, Email: ines.devega@uni-ulm.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes ISI:000285582800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 303
Permanent link to this record
 

 
Author Aguilar, A.C.; Binosi, D.; Ibañez, D.; Papavassiliou, J.
Title (up) Effects of divergent ghost loops on the Green's functions of QCD Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 89 Issue 8 Pages 085008 - 26pp
Keywords
Abstract In the present work, we discuss certain characteristic features encoded in some of the fundamental QCD Green's functions, for which the origin can be traced back to the nonperturbative masslessness of the ghost field, in the Landau gauge. Specifically, the ghost loops that contribute to these Green's functions display infrared divergences, akin to those encountered in the perturbative treatment, in contradistinction to the gluonic loops, for which perturbative divergences are tamed by the dynamical generation of an effective gluon mass. In d = 4, the aforementioned divergences are logarithmic, thus causing a relatively mild impact, whereas in d = 3 they are linear, giving rise to enhanced effects. In the case of the gluon propagator, these effects do not interfere with its finiteness, but make its first derivative diverge at the origin, and introduce a maximum in the region of infrared momenta. The three-gluon vertex is also affected, and the induced divergent behavior is clearly exposed in certain special kinematic configurations, usually considered in lattice simulations; the sign of the corresponding divergence is unambiguously determined. The main underlying concepts are developed in the context of a simple toy model, which demonstrates clearly the interconnected nature of the various effects. The picture that emerges is subsequently corroborated by a detailed nonperturbative analysis, combining lattice results with the dynamical integral equations governing the relevant ingredients, such as the nonperturbative ghost loop and the momentumdependent gluon mass.
Address [Aguilar, A. C.] Univ Estadual Campinas, UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Sao Paulo, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000334335000020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1769
Permanent link to this record
 

 
Author Schreeck, H.; Paschen, B.; Wieduwilt, P.; Ahlburg, P.; Andricek, L.; Dingfelder, J.; Frey, A.; Lutticke, F.; Marinas, C.; Richter, R.; Schwenker, B.
Title (up) Effects of gamma irradiation on DEPFET pixel sensors for the Belle II experiment Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 959 Issue Pages 163522 - 9pp
Keywords DEPFET; Radiation damage; Particle tracking detectors; Belle II
Abstract For the Belle II experiment at KEK (Tsukuba, Japan) the KEKB accelerator was upgraded to deliver a 40 times larger instantaneous luminosity than before, which requires an increased radiation hardness of the detector components. As the innermost part of the Belle II detector, the pixel detector (PXD), based on DEPFET (DEpleted P-channel Field Effect Transistor) technology, is most exposed to radiation from the accelerator. An irradiation campaign was performed to verify that the PXD can cope with the expected amount of radiation. We present the results of this measurement campaign in which an X-ray machine was used to irradiate a single PXD half-ladder to a total dose of 266 kGy. The half-ladder is from the same batch as the half-ladders used for Belle II. According to simulations, the total accumulated dose corresponds to 7-10 years of Belle II operation. While individual components have been irradiated before, this campaign is the first full system irradiation. We discuss the effects on the DEPFET sensors, as well as the performance of the front-end electronics. In addition, we present efficiency studies of the half-ladder from beam tests performed before and after the irradiation.
Address [Schreeck, Harrison; Wieduwilt, Philipp; Frey, Ariane; Schwenker, Benjamin] Georg August Univ Gottingen, Phys Inst 2, Friedrich Hund Pl 1, D-37077 Gottingen, Germany, Email: harrison.schreeck@phys.uni-goettingen.de
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000518368800016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4316
Permanent link to this record
 

 
Author Tarifeño-Saldivia, A.; Soto, L.
Title (up) Effects of gas chamber geometry and gas flow on the neutron production in a fast plasma focus neutron source Type Journal Article
Year 2014 Publication Plasma Physics and Controlled Fusion Abbreviated Journal Plasma Phys. Control. Fusion
Volume 56 Issue 12 Pages 125013 - 5pp
Keywords pulsed neutron source; repetitive plasma focus; neutron yield measurement; fast plasma focus
Abstract This work reports that gas chamber geometry and gas flow management substantially affect the neutron production of a repetitive fast plasma focus. The gas flow rate is the most sensitive parameter. An appropriate design of the gas chamber combined with a suitable flow-rate management can lead to improvements in the neutron production of one order of magnitude working in a fast repetitive mode.
Address [Tarifeno-Saldivia, Ariel; Soto, Leopoldo] Comis Chilena Energia Nucl CCHEN, Santiago, Chile, Email: atarisal@gmail.com;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3335 ISBN Medium
Area Expedition Conference
Notes WOS:000346926300024 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2070
Permanent link to this record
 

 
Author King, S.F.; Molina Sedgwick, S.; Parke, S.J.; Prouse, N.W.
Title (up) Effects of matter density profiles on neutrino oscillations for T2HK and T2HKK Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 7 Pages 076019 - 16pp
Keywords
Abstract This paper explores the effects of changes in matter density profiles on neutrino oscillation probabilities, and whether these could potentially be seen by the future Hyper-Kamiokande long-baseline oscillation experiment (T2HK). The analysis is extended to include the possibility of having an additional detector in Korea (T2HKK). In both cases, we find that these effects will be immeasurable, as the magnitudes of the changes in the oscillation probabilities induced in all density profile scenarios considered here remain smaller than the estimated experimental sensitivity to the oscillation probabilities of each experiment, for both appearance and disappearance channels. Therefore, we conclude that using a constant density profile is sufficient for both the T2HK and T2HKK experiments.
Address [King, Stephen F.; Molina Sedgwick, Susana] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: s.f.king@soton.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000527887200007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4380
Permanent link to this record
 

 
Author Biswas, S. et al; Perez-Vidal, R.M.; Domingo-Pardo, C.
Title (up) Effects of one valence proton on seniority and angular momentum of neutrons in neutron-rich(51)( 122-)(131)Sb isotopes Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 99 Issue 6 Pages 064302 - 21pp
Keywords
Abstract Background: Levels fulfilling the seniority scheme and relevant isomers are commonly observed features in semimagic nuclei; for example, in Sn isotopes (Z = 50). Seniority isomers in Sn, with dominantly pure neutron configurations, directly probe the underlying neutron-neutron (vv) interaction. Furthermore, an addition of a valence proton particle or hole, through neutron-proton (v pi) interaction, affects the neutron seniority as well as the angular momentum. Purpose: Benchmark the reproducibility of the experimental observables, like the excitation energies (E-x) and the reduced electric-quadrupole transition probabilities [B(E2)], with the results obtained from shell-model interactions for neutron-rich Sn and Sb isotopes with N < 82. Study the sensitivity of the aforementioned experimental observables to the model interaction components. Furthermore, explore from a microscopic point of view the structural similarity between the isomers in Sn and Sb, and thus the importance of the valence proton. Methods: The neutron-rich Sb122-131 isotopes were produced as fission fragments in the reaction Be-9(U-238, f) with 6.2 MeV/u beam energy. A unique setup, consisting of AGATA, VAMOS++, and EXOGAM detectors, was used which enabled the prompt-delayed gamma-ray spectroscopy of fission fragments in the time range of 100 ns to 200 μs. Results: New isomers and prompt and delayed transitions were established in the even-A Sb122-131 isotopes. In the odd-A Sb122-131 isotopes, new prompt and delayed gamma-ray transitions were identified, in addition to the confirmation of the previously known isomers. The half-lives of the isomeric states and the B(E2) transition probabilities of the observed transitions depopulating these isomers were extracted. Conclusions: The experimental data was compared with the theoretical results obtained in the framework of large-scale shell-model (LSSM) calculations in a restricted model space. Modifications of several components of the shell-model interaction were introduced to obtain a consistent agreement with the excitation energies and the B(E2) transition probabilities in neutron-rich Sn and Sb isotopes. The isomeric configurations in Sn and Sb were found to be relatively pure. Furthermore, the calculations revealed that the presence of a single valence proton, mainly in the g(7/2) orbital in Sb isotopes, leads to significant mixing (due to the v pi interaction) of (i) the neutron seniorities (upsilon(v)) and (ii) the neutron angular momentum (I-v). The above features have a weak impact on the excitation energies, but have an important impact on the B(E2) transition probabilities. In addition, a constancy of the relative excitation energies irrespective of neutron seniority and neutron number in Sn and Sb was observed.
Address [Biswas, S.; Lemasson, A.; Rejmund, M.; Navin, A.; Kim, Y. H.; Michelagnoli, C.; Clement, E.; de France, G.; Fremont, G.; Goupil, J.; Jacquot, B.; Li, H. J.; Menager, A.; More, V; Ropert, J.; Lefevre, A.; Saillant, F.] CNRS, GANIL, CEA, IN2P3,DRF, Bd Henri Becquerel,BP 55027, F-14076 Caen 5, France, Email: biswas@ganil.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000470856500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4051
Permanent link to this record
 

 
Author Ikeno, N.; Ono, A.; Nara, Y.; Ohnishi, A.
Title (up) Effects of Pauli blocking on pion production in central collisions of neutron-rich nuclei Type Journal Article
Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 101 Issue 3 Pages 034607 - 9pp
Keywords
Abstract Pauli blocking is carefully investigated for the processes of NN <-> N Delta and Delta -> N pi in heavy-ion collisions, aiming at a more precise prediction of the pi(-)/pi(+) ratio which is an important observable to constrain the high-density symmetry energy. We use the AMD + JAM approach, which combines the antisymmetrized molecular dynamics for the time evolution of nucleons and the Jet AA Microscopic transport model to treat processes for Delta resonances and pions. As is known in general transport-code simulations, it is difficult to treat Pauli blocking very precisely due to unphysical fluctuations and additional smearing of the phase-space distribution function, when Pauli blocking is treated in the standard method of JAM. We propose an improved method in AMD + JAM to use the Wigner function precisely calculated in AMD as the blocking probability. Different Pauli blocking methods are compared in heavy-ion collisions of neutron-rich nuclei, Sn-132+Sn-124, at 270 MeV/nucleon. With the more accurate method, we find that Pauli blocking is stronger, in particular for the neutron in the final state in NN -> N Delta and Delta -> N pi, compared to the case with a proton in the final state. Consequently, the pi(-)/pi(+) ratio becomes higher when the Pauli blocking is improved, the effect of which is found to be comparable to the sensitivity to the high-density symmetry energy.
Address [Ikeno, Natsumi] Tottori Univ, Dept Agr Life & Environm Sci, Tottori 6808551, Japan
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000519701800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4327
Permanent link to this record
 

 
Author Foffa, S.; Sturani, R.; Torres Bobadilla, W.J.
Title (up) Efficient resummation of high post-Newtonian contributions to the binding energy Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 165 - 18pp
Keywords Classical Theories of Gravity; Black Holes; Effective Field Theories
Abstract A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more “efficient” observables like the scattering angle, thus making the EFT approach in harmonic gauge at least as scalable as the others methods.
Address [Foffa, Stefano] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland, Email: stefano.foffa@unige.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000621231300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4740
Permanent link to this record
 

 
Author Breso-Pla, V.; Falkowski, A.; Gonzalez-Alonso, M.; Monsalvez-Pozo, K.
Title (up) EFT analysis of New Physics at COHERENT Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 074 - 53pp
Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Interactions; SMEFT
Abstract Using an effective field theory approach, we study coherent neutrino scattering on nuclei, in the setup pertinent to the COHERENT experiment. We include non-standard effects both in neutrino production and detection, with an arbitrary flavor structure, with all leading Wilson coefficients simultaneously present, and without assuming factorization in flux times cross section. A concise description of the COHERENT event rate is obtained by introducing three generalized weak charges, which can be associated (in a certain sense) to the production and scattering of nu(e), nu(mu) and (nu) over bar (mu) on the nuclear target. Our results are presented in a convenient form that can be trivially applied to specific New Physics scenarios. In particular, we find that existing COHERENT measurements provide percent level constraints on two combinations of Wilson coefficients. These constraints have a visible impact on the global SMEFT fit, even in the constrained flavor-blind setup. The improvement, which affects certain 4-fermion LLQQ operators, is significantly more important in a flavor-general SMEFT. Our work shows that COHERENT data should be included in electroweak precision studies from now on.
Address [Breso-Pla, Victor; Gonzalez-Alonso, Martin; Monsalvez-Pozo, Kevin] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: vicbreso@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000988320800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5549
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Kopp, J.; Soreq, Y.; Tabrizi, Z.
Title (up) EFT at FASER nu Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 086 - 46pp
Keywords Effective Field Theories; Neutrino Physics
Abstract We investigate the sensitivity of the FASER nu detector to new physics in the form of non-standard neutrino interactions. FASER nu, which will be installed 480 m downstream of the ATLAS interaction point, will for the first time study interactions of multi-TeV neutrinos from a controlled source. Our formalism – which is applicable to any current and future neutrino experiment – is based on the Standard Model Effective Theory (SMEFT) and its counterpart, Weak Effective Field Theory (WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASER nu will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASER nu constraints will become comparable to existing limits – some of them derived for the first time in this paper – already with 150 fb(-1) of data.
Address [Falkowski, Adam] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: afalkows017@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000707348700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5002
Permanent link to this record