ATLAS Collaboration(Aad, G. et al), Cabrera Urban, S., Castillo Gimenez, V., Costa, M. J., Fassi, F., Ferrer, A., et al. (2013). ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at root s=7 TeV. J. High Energy Phys., 01(1), 029–46pp.
Abstract: Mass and angular distributions of dijets produced in LHC proton-proton collisions at a centre-of-mass energy root s = 7TeV have been studied with the ATLAS detector using the full 2011 data set with an integrated luminosity of 4.8 fb(-1). Dijet masses up to similar to 4.0TeV have been probed. No resonance-like features have been observed in the dijet mass spectrum, and all angular distributions are consistent with the predictions of QCD. Exclusion limits on six hypotheses of new phenomena have been set at 95% CL in terms of mass or energy scale, as appropriate. These hypotheses include excited quarks below 2.83 TeV, colour octet scalars below 1.86TeV, heavy W bosons below 1.68 TeV, string resonances below 3.61 TeV, quantum black holes with six extra space-time dimensions for quantum gravity scales below 4.11 TeV, and quark contact interactions below a compositeness scale of 7.6 TeV in a destructive interference scenario.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Aparisi Pozo, J. A., Bailey, A. J., Bouchhar, N., et al. (2024). Azimuthal Angle Correlations of Muons Produced via Heavy-Flavor Decays in 5.02 TeV Pb + Pb and pp Collisions with the ATLAS Detector. Phys. Rev. Lett., 132(20), 202301–23pp.
Abstract: Angular correlations between heavy quarks provide a unique probe of the quark-gluon plasma created in ultrarelativistic heavy-ion collisions. Results are presented of a measurement of the azimuthal angle correlations between muons originating from semileptonic decays of heavy quarks produced in 5.02 TeV Pb + Pb and pp collisions at the LHC. The muons are measured with transverse momenta and pseudorapidities satisfying p(T)(mu) > 4 GeV and vertical bar eta(mu)vertical bar < 2.4, respectively. The distributions of azimuthal angle separation Delta Phi for muon pairs having pseudorapidity separation vertical bar Delta eta vertical bar > 0.8, are measured in different Pb + Pb centrality intervals and compared to the same distribution measured in pp collisions at the same center-of-mass energy. Results are presented separately for muon pairs with opposite-sign charges, same-sign charges, and all pairs. A clear peak is observed in all Delta Phi distributions at Delta Phi similar to Pi, consistent with the parent heavy-quark pairs being produced via hard-scattering processes. The widths of that peak, characterized using Cauchy-Lorentz fits to the Delta Phi distributions, are found to not vary significantly as a function of Pb + Pb collision centrality and are similar for pp and Pb + Pb collisions. This observation will provide important constraints on theoretical descriptions of heavy-quark interactions with the quarkgluon plasma.
|
ATLAS Collaboration(Aad, G. et al), Alvarez Piqueras, D., Barranco Navarro, L., Cabrera Urban, S., Castillo Gimenez, V., Cerda Alberich, L., et al. (2016). Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period. J. Instrum., 11, P05013–78pp.
Abstract: This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high beta* are studied.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2024). Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum. J. Instrum., 19(6), P06014–60pp.
Abstract: Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with the Fluka Monte Carlo programme.
|
ATLAS Collaboration(Aad, G. et al), Aikot, A., Amos, K. R., Bouchhar, N., Cabrera Urban, S., Cantero, J., et al. (2024). Calibration of a soft secondary vertex tagger using proton-proton collisions at √s=13 TeV with the ATLAS detector. Phys. Rev. D, 110(3), 032015–30pp.
Abstract: Several processes studied by the ATLAS experiment at the Large Hadron Collider produce low-momentum b-flavored hadrons in the final state. This paper describes the calibration of a dedicated tagging algorithm that identifies b-flavored hadrons outside of hadronic jets by reconstructing the soft secondary vertices originating from their decays. The calibration is based on a proton-proton collision dataset at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140 fb(-1). Scale factors used to correct the algorithm's performance in simulated events are extracted for the b-tagging efficiency and the mistag rate of the algorithm using a data sample enriched in t (t) over bar events. Several orthogonal measurement regions are defined, binned as a function of the multiplicities of soft secondary vertices and jets containing a b-flavored hadron in the event. The mistag rate scale factors are estimated separately for events with low and high average numbers of interactions per bunch crossing. The results, which are derived from events with low missing transverse momentum, are successfully validated in a phase space characterized by high missing transverse momentum and therefore are applicable to new physics searches carried out in either phase space regime.
|