toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arganda, E.; Marcano, X.; Martin Lozano, V.; Medina, A.D.; Perez, A.D.; Szewc, M.; Szynkman, A. url  doi
openurl 
  Title (up) A method for approximating optimal statistical significances with machine-learned likelihoods Type Journal Article
  Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 82 Issue 11 Pages 993 - 14pp  
  Keywords  
  Abstract Machine-learning techniques have become fundamental in high-energy physics and, for new physics searches, it is crucial to know their performance in terms of experimental sensitivity, understood as the statistical significance of the signal-plus-background hypothesis over the background-only one. We present here a simple method that combines the power of current machine-learning techniques to face high-dimensional data with the likelihood-based inference tests used in traditional analyses, which allows us to estimate the sensitivity for both discovery and exclusion limits through a single parameter of interest, the signal strength. Based on supervised learning techniques, it can perform well also with high-dimensional data, when traditional techniques cannot. We apply the method to a toy model first, so we can explore its potential, and then to a LHC study of new physics particles in dijet final states. Considering as the optimal statistical significance the one we would obtain if the true generative functions were known, we show that our method provides a better approximation than the usual naive counting experimental results.  
  Address [Arganda, Ernesto; Marcano, Xabier] Inst Fis Teor UAM CSIC, C Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain, Email: ernesto.arganda@csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000879175000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5404  
Permanent link to this record
 

 
Author Valdes-Cortez, C.; Niatsetski, Y.; Perez-Calatayud, J.; Ballester, F.; Vijande, J. doi  openurl
  Title (up) A Monte Carlo study of the relative biological effectiveness in surface brachytherapy Type Journal Article
  Year 2022 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 49 Issue Pages 5576-5588  
  Keywords Monte Carlo; relative biological effectiveness; surface HDR brachytherapy  
  Abstract Purpose This work aims to simulate clustered DNA damage from ionizing radiation and estimate the relative biological effectiveness (RBE) for radionuclide (rBT)- and electronic (eBT)-based surface brachytherapy through a hybrid Monte Carlo (MC) approach, using realistic models of the sources and applicators. Methods Damage from ionizing radiation has been studied using the Monte Carlo Damage Simulation algorithm using as input the primary electron fluence simulated using a state-of-the-art MC code, PENELOPE-2018. Two Ir-192 rBT applicators, Valencia and Leipzig, one Co-60 source with a Freiburg Flap applicator (reference source), and two eBT systems, Esteya and INTRABEAM, have been included in this study implementing full realizations of their geometries as disclosed by the manufacturer. The role played by filtration and tube kilovoltage has also been addressed. Results For rBT, an RBE value of about 1.01 has been found for the applicators and phantoms considered. In the case of eBT, RBE values for the Esteya system show an almost constant RBE value of about 1.06 for all depths and materials. For INTRABEAM, variations in the range of 1.12-1.06 are reported depending on phantom composition and depth. Modifications in the Esteya system, filtration, and tube kilovoltage give rise to variations in the same range. Conclusions Current clinical practice does not incorporate biological effects in surface brachytherapy. Therefore, the same absorbed dose is administered to the patients independently on the particularities of the rBT or eBT system considered. The almost constant RBE values reported for rBT support that assumption regardless of the details of the patient geometry, the presence of a flattening filter in the applicator design, or even significant modifications in the photon energy spectra above 300 keV. That is not the case for eBT, where a clear dependence on the eBT system and the characteristics of the patient geometry are reported. A complete study specific for each eBT system, including detailed applicator characteristics (size, shape, filtering, among others) and common anatomical locations, should be performed before adopting an existing RBE value.  
  Address [Valdes-Cortez, Christian] Hosp Reg Antofagasta, Nucl Med Dept, Antofagasta, Chile, Email: cvalcort@gmail.com  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000811709400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5262  
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Diaz, A.; Salesa Greus, F.; Sanchez Losa, A. doi  openurl
  Title (up) A Narrow Optical Pulse Emitter Based on LED: NOPELED Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal Sensors  
  Volume 22 Issue 19 Pages 7683 - 15pp  
  Keywords short optical pulse; optical instrumentation  
  Abstract Light sources emitting short pulses are needed in many particle physics experiments using optical sensors as they can replicate the light produced by the particles being detected and are also an important calibration and test element. This work presents NOPELED, a light source based on LEDs emitting short optical pulses with typical rise times of less than 3 ns and Full Width at Half Maximum lower than 7 ns. The emission wavelength depends on the model of LED used. Several LED models have been characterized in the range from 405 to 532 nm, although NOPELED can work with LED emitting wavelengths outside of that region. While the wavelength is fixed for a given LED model, the intensity and the frequency of the optical pulse can be controlled. NOPELED, which also has low cost and simple operation, can be operated remotely, making it appropriate for either different physics experiments needing in-place light sources such as astrophysical neutrino detectors using photo-multipliers or positron emission tomography devices using scintillation counters, or, beyond physics, applications needing short pulses of light such as protein fluorescence or chemodetection of heavy metals.  
  Address [Real, Diego; Calvo, David; Salesa Greus, Francisco; Sanchez Losa, Agustin] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000867935300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5381  
Permanent link to this record
 

 
Author R3B Collaboration (Heil, M. et al); Nacher, E. doi  openurl
  Title (up) A new Time-of-flight detector for the (RB)-B-3 setup Type Journal Article
  Year 2022 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 58 Issue 12 Pages 248 - 19pp  
  Keywords  
  Abstract We present the design, prototype developments and test results of the new time-of-flight detector (ToFD) which is part of the R3B experimental setup at GSI and FAIR, Darmstadt, Germany. The ToFD detector is able to detect heavy-ion residues of all charges at relativistic energies with a relative energy precision sigma_Delta E/Delta E of up to 1% and a time precision of up to 14 ps (sigma). Together with an elaborate particle-tracking system, the full identification of relativistic ions from hydrogen up to uranium in mass and nuclear charge is possible.  
  Address [Heil, M.; Kelic-Heil, A.; Aumann, T.; Boretzky, K.; Caesar, C.; Fruehauf, J.; Glorius, J.; Heggen, H.; Kiselev, O.; Koch, K.; Koerper, D.; Kurz, N.; Loeher, B.; Litvinov, Y.; Rossi, D.; Savran, D.; Simon, H.; Toernqvist, H. T.; Varga, L.; Wamers, F.] GSI Helmholtzzentrum Schwerionenforsch, Planckstr 1, D-64291 Darmstadt, Germany, Email: M.Heil@gsi.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000901484400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5456  
Permanent link to this record
 

 
Author Angles-Castillo, A.; Perez, A. url  doi
openurl 
  Title (up) A quantum walk simulation of extra dimensions with warped geometry Type Journal Article
  Year 2022 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 12 Issue 1 Pages 1926 - 12pp  
  Keywords  
  Abstract We investigate the properties of a quantum walk which can simulate the behavior of a spin 1/2 particle in a model with an ordinary spatial dimension, and one extra dimension with warped geometry between two branes. Such a setup constitutes a 1+ 1 dimensional version of the Randall-Sundrum model, which plays an important role in high energy physics. In the continuum spacetime limit, the quantum walk reproduces the Dirac equation corresponding to the model, which allows to anticipate some of the properties that can be reproduced by the quantum walk. In particular, we observe that the probability distribution becomes, at large time steps, concentrated near the “low energy” brane, and can be approximated as the lowest eigenstate of the continuum Hamiltonian that is compatible with the symmetries of the model. In this way, we obtain a localization effect whose strength is controlled by a warp coefficient. In other words, here localization arises from the geometry of the model, at variance with the usual effect that is originated from random irregularities, as in Anderson localization. In summary, we establish an interesting correspondence between a high energy physics model and localization in quantum walks.  
  Address [Angles-Castillo, Andreu] Univ Valencia, CSIC, Dept Fis Teor, Valencia 46100, Spain, Email: andreu.angles@ific.uv.es  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000751472600024 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5107  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva