toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Muñoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G. doi  openurl
  Title (down) Influence of the background in Compton camera images for proton therapy treatment monitoring Type Journal Article
  Year 2023 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 68 Issue 14 Pages 144001 - 16pp  
  Keywords Compton imaging; Compton camera; proton therapy; treatment monitoring; Monte Carlo simulation; image reconstruction; background  
  Abstract Objective. Background events are one of the most relevant contributions to image degradation in Compton camera imaging for hadron therapy treatment monitoring. A study of the background and its contribution to image degradation is important to define future strategies to reduce the background in the system. Approach. In this simulation study, the percentage of different kinds of events and their contribution to the reconstructed image in a two-layer Compton camera have been evaluated. To this end, GATE v8.2 simulations of a proton beam impinging on a PMMA phantom have been carried out, for different proton beam energies and at different beam intensities. Main results. For a simulated Compton camera made of Lanthanum (III) Bromide monolithic crystals, coincidences caused by neutrons arriving from the phantom are the most common type of background produced by secondary radiations in the Compton camera, causing between 13% and 33% of the detected coincidences, depending on the beam energy. Results also show that random coincidences are a significant cause of image degradation at high beam intensities, and their influence in the reconstructed images is studied for values of the time coincidence windows from 500 ps to 100 ns. Significance. Results indicate the timing capabilities required to retrieve the fall-off position with good precision. Still, the noise observed in the image when no randoms are considered make us consider further background rejection methods.  
  Address [Borja-Lloret, M.; Barrientos, L.; Bernabeu, J.; Lacasta, C.; Munoz, E.; Ros, A.; Roser, J.; Viegas, R.; Llosa, G.] Inst Fis Corpuscular IFIC, CSIC UV, Valencia, Spain, Email: Marina.Borja@csic.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001022671300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5571  
Permanent link to this record
 

 
Author Roser, J.; Muñoz, E.; Barrientos, L.; Barrio, J.; Bernabeu, J.; Borja-Lloret, M.; Etxebeste, A.; Llosa, G.; Ros, A.; Viegas, R.; Oliver, J.F. doi  openurl
  Title (down) Image reconstruction for a multi-layer Compton telescope: an analytical model for three interaction events Type Journal Article
  Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 65 Issue 14 Pages 145005 - 17pp  
  Keywords Compton camera; Compton imaging; hadron therapy; image reconstruction; lm-mlem; monte carlo simulations; multi-layer Compton telescope  
  Abstract Compton Cameras are electronically collimated photon imagers suitable for sub-MeV to few MeV gamma-ray detection. Such features are desirable to enablein vivorange verification in hadron therapy, through the detection of secondary Prompt Gammas. A major concern with this technique is the poor image quality obtained when the incoming gamma-ray energy is unknown. Compton Cameras with more than two detector planes (multi-layer Compton Cameras) have been proposed as a solution, given that these devices incorporate more signal sequences of interactions to the conventional two interaction events. In particular, three interaction events convey more spectral information as they allow inferring directly the incident gamma-ray energy. A three-layer Compton Telescope based on continuous Lanthanum (III) Bromide crystals coupled to Silicon Photomultipliers is being developed at the IRIS group of IFIC-Valencia. In a previous work we proposed a spectral reconstruction algorithm for two interaction events based on an analytical model for the formation of the signal. To fully exploit the capabilities of our prototype, we present here an extension of the model for three interaction events. Analytical expressions of the sensitivity and the System Matrix are derived and validated against Monte Carlo simulations. Implemented in a List Mode Maximum Likelihood Expectation Maximization algorithm, the proposed model allows us to obtain four-dimensional (energy and position) images by using exclusively three interaction events. We are able to recover the correct spectrum and spatial distribution of gamma-ray sources when ideal data are employed. However, the uncertainties associated to experimental measurements result in a degradation when real data from complex structures are employed. Incorrect estimation of the incident gamma-ray interaction positions, and missing deposited energy associated with escaping secondaries, have been identified as the causes of such degradation by means of a detailed Monte Carlo study. As expected, our current experimental resolution and efficiency to three interaction events prevents us from correctly recovering complex structures of radioactive sources. However, given the better spectral information conveyed by three interaction events, we expect an improvement of the image quality of conventional Compton imaging when including such events. In this regard, future development includes the incorporation of the model assessed in this work to the two interaction events model in order to allow using simultaneously two and three interaction events in the image reconstruction.  
  Address [Roser, J.; Munoz, E.; Barrientos, L.; Barrio, J.; Bernabeu, J.; Borja-Lloret, M.; Etxebeste, A.; Llosa, G.; Ros, A.; Viegas, R.; Oliver, J. F.] Inst Fis Corpuscular IFIC CSIC UVEG, Valencia, Spain, Email: Jorge.Roser@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000552701600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4481  
Permanent link to this record
 

 
Author Aiola, S.; Amhis, Y.; Billoir, P.; Jashal, B.K.; Henry, L.; Oyanguren, A.; Marin Benito, C.; Polci, F.; Quagliani, R.; Schiller, M.; Wang, M. url  doi
openurl 
  Title (down) Hybrid seeding: A standalone track reconstruction algorithm for scintillating fibre tracker at LHCb Type Journal Article
  Year 2021 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 260 Issue Pages 107713 - 5pp  
  Keywords Track reconstruction; Pattern Recognition; LHCb  
  Abstract We describe the Hybrid seeding, a stand-alone pattern recognition algorithm aiming at finding charged particle trajectories for the LHCb upgrade. A significant improvement to the charged particle reconstruction efficiency is accomplished by exploiting the knowledge of the LHCb magnetic field and the position of energy deposits in the scintillating fibre tracker detector. Moreover, we achieve a low fake rate and a small contribution to the overall timing budget of the LHCb real-time data processing.  
  Address [Billoir, P.; Polci, F.; Quagliani, R.] Sorbonne Univ, Paris Diderot Sorbonne Paris Cite, LPNHE, CNRS IN2P3, Paris, France, Email: louis.henry@cern.ch;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000608243400007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4685  
Permanent link to this record
 

 
Author Albiol, F.; Corbi, A.; Albiol, A. doi  openurl
  Title (down) Geometrical Calibration of X-Ray Imaging With RGB Cameras for 3D Reconstruction Type Journal Article
  Year 2016 Publication IEEE Transactions on Medical Imaging Abbreviated Journal IEEE Trans. Med. Imaging  
  Volume 35 Issue 8 Pages 1952-1961  
  Keywords 3D reconstruction; camera system; geometric calibration; visible fiducials; X-ray imaging  
  Abstract We present a methodology to recover the geometrical calibration of conventional X-ray settings with the help of an ordinary video camera and visible fiducials that are present in the scene. After calibration, equivalent points of interest can be easily identifiable with the help of the epipolar geometry. The same procedure also allows the measurement of real anatomic lengths and angles and obtains accurate 3D locations from image points. Our approach completely eliminates the need for X-ray-opaque reference marks (and necessary supporting frames) which can sometimes be invasive for the patient, occlude the radiographic picture, and end up projected outside the imaging sensor area in oblique protocols. Two possible frameworks are envisioned: a spatially shifting X-ray anode around the patient/object and a moving patient that moves/rotates while the imaging system remains fixed. As a proof of concept, experiences with a device under test (DUT), an anthropomorphic phantom and a real brachytherapy session have been carried out. The results show that it is possible to identify common points with a proper level of accuracy and retrieve three-dimensional locations, lengths and shapes with a millimetric level of precision. The presented approach is simple and compatible with both current and legacy widespread diagnostic X-ray imaging deployments and it can represent a good and inexpensive alternative to other radiological modalities like CT.  
  Address [Albiol, Francisco; Corbi, Alberto] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular IFIC, Paterna 46980, Spain, Email: kiko@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000381436000016 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2781  
Permanent link to this record
 

 
Author Aguiar, P.; Rafecas, M.; Ortuño, J.E.; Kontaxakis, G.; Santos, A.; Pavia, J.; Rosetti, M. doi  openurl
  Title (down) Geometrical and Monte Carlo projectors in 3D PET reconstruction Type Journal Article
  Year 2010 Publication Medical Physics Abbreviated Journal Med. Phys.  
  Volume 37 Issue 11 Pages 5691-5702  
  Keywords 3D PET; iterative reconstruction; list-mode reconstruction; ray-tracing techniques; Monte Carlo simulation; system response matrix  
  Abstract Purpose: In the present work, the authors compare geometrical and Monte Carlo projectors in detail. The geometrical projectors considered were the conventional geometrical Siddon ray-tracer (S-RT) and the orthogonal distance-based ray-tracer (OD-RT), based on computing the orthogonal distance from the center of image voxel to the line-of-response. A comparison of these geometrical projectors was performed using different point spread function (PSF) models. The Monte Carlo-based method under consideration involves an extensive model of the system response matrix based on Monte Carlo simulations and is computed off-line and stored on disk. Methods: Comparisons were performed using simulated and experimental data of the commercial small animal PET scanner rPET. Results: The results demonstrate that the orthogonal distance-based ray-tracer and Siddon ray-tracer using PSF image-space convolutions yield better images in terms of contrast and spatial resolution than those obtained after using the conventional method and the multiray-based S-RT. Furthermore, the Monte Carlo-based method yields slight improvements in terms of contrast and spatial resolution with respect to these geometrical projectors. Conclusions: The orthogonal distance-based ray-tracer and Siddon ray-tracer using PSF image-space convolutions represent satisfactory alternatives to factorizing the system matrix or to the conventional on-the-fly ray-tracing methods for list-mode reconstruction, where an extensive modeling based on Monte Carlo simulations is unfeasible.  
  Address [Aguiar, Pablo] Univ Santiago de Compostela, Dept Fis Particulas, Complexo Hosp Univ Santiago de Compostela, Fdn IDICHUS IDIS, Santiago De Compostela, Spain, Email: pablo.aguiar.fernandez@sergas.es  
  Corporate Author Thesis  
  Publisher Amer Assoc Physicists Medicine Amer Inst Physics Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283747600015 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 338  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva