toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Amoroso, S.; Caron, S.; Jueid, A.; Ruiz de Austri, R.; Skands, P. url  doi
openurl 
  Title (up) Estimating QCD uncertainties in Monte Carlo event generators for gamma-ray dark matter searches Type Journal Article
  Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 007 - 44pp  
  Keywords dark matter simulations; dark matter theory; gamma ray theory  
  Abstract Motivated by the recent galactic center gamma-ray excess identified in the Fermi-LAT data, we perform a detailed study of QCD fragmentation uncertainties in the modeling of the energy spectra of gamma-rays from Dark-Matter (DM) annihilation. When Dark-Matter particles annihilate to coloured final states, either directly or via decays such as W(*) -> qq-', photons are produced from a complex sequence of shower, hadronisation and hadron decays. In phenomenological studies their energy spectra are typically computed using Monte Carlo event generators. These results have however intrinsic uncertainties due to the specific model used and the choice of model parameters, which are difficult to asses and which are typically neglected. We derive a new set of hadronisation parameters (tunes) for the PYTHIA 8.2 Monte Carlo generator from a fit to LEP and SLD data at the Z peak. For the first time we also derive a conservative set of uncertainties on the shower and hadronisation model parameters. Their impact on the gamma-ray energy spectra is evaluated and discussed for a range of DM masses and annihilation channels. The spectra and their uncertainties are also provided in tabulated form for future use. The fragmentation-parameter uncertainties may be useful for collider studies as well.  
  Address [Amoroso, Simone] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: simone.amoroso@desy.de;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000467288200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4006  
Permanent link to this record
 

 
Author Amerio, A.; Cuoco, A.; Fornengo, N. url  doi
openurl 
  Title (up) Extracting the gamma-ray source-count distribution below the Fermi-LAT detection limit with deep learning Type Journal Article
  Year 2023 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 09 Issue 9 Pages 029 - 39pp  
  Keywords gamma ray theory; Machine learning  
  Abstract We reconstruct the extra-galactic gamma-ray source-count distribution, or dN/dS, of resolved and unresolved sources by adopting machine learning techniques. Specifically, we train a convolutional neural network on synthetic 2-dimensional sky-maps, which are built by varying parameters of underlying source-counts models and incorporate the FermiLAT instrumental response functions. The trained neural network is then applied to the Fermi-LAT data, from which we estimate the source count distribution down to flux levels a factor of 50 below the Fermi-LAT threshold. We perform our analysis using 14 years of data collected in the (1, 10) GeV energy range. The results we obtain show a source count distribution which, in the resolved regime, is in excellent agreement with the one derived from cataloged sources, and then extends as dN/dS " S-2 in the unresolved regime, down to fluxes of 5 center dot 10-12 cm-2 s-1. The neural network architecture and the devised methodology have the flexibility to enable future analyses to study the energy dependence of the source-count distribution.  
  Address [Amerio, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: aurelio.amerio@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001097055700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5785  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (up) First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 006 - 16pp  
  Keywords neutrino experiments; neutrino astronomy; gamma ray bursts theory  
  Abstract A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV-PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.  
  Address Univ Politecn Valencia, Inst Invest Gestio Integrada Zones Costaneres IGI, Gandia 46730, Spain, Email: mieke.bouwhuis@nikhef.nl  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000316989200007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1433  
Permanent link to this record
 

 
Author De La Torre Luque, P.; Gaggero, D.; Grasso, D.; Fornieri, O.; Egberts, K.; Steppa, C.; Evoli, C. url  doi
openurl 
  Title (up) Galactic diffuse gamma rays meet the PeV frontier Type Journal Article
  Year 2023 Publication Astronomy & Astrophysics Abbreviated Journal Astron. Astrophys.  
  Volume 672 Issue Pages A58 - 11pp  
  Keywords diffusion; cosmic rays; Galaxy; general; gamma rays; diffuse background  
  Abstract The Tibet AS gamma and LHAASO collaborations recently reported the observation of a gamma-ray diffuse emission with energy up to the PeV level from the Galactic plane.Aims. We discuss the relevance of non-uniform cosmic-ray transport scenarios and the implications of these results for cosmic-ray physics.Methods. We used the DRAGON and HERMES codes to build high-resolution maps and spectral distributions of that emission for several representative models under the condition that they reproduce a wide set of local cosmic-ray data up to 100 PeV.Results. We show that the energy spectra measured by Tibet AS gamma, LHAASO, ARGO-YBJ, and Fermi-LAT in several regions of interest in the sky can all be reasonably described in terms of the emission arising by the Galactic cosmic-ray “sea”. We also show that all our models are compatible with IceTop gamma-ray upper limits.Conclusions. We compare the predictions of conventional and space-dependent transport models with those data sets. Although the Fermi-LAT, ARGO-YBJ, and LHAASO preliminary data slightly favor this scenario, due to the still large experimental errors, the poorly known source spectral shape at the highest energies, the potential role of spatial fluctuations in the leptonic component, and a possible larger-than-expected contamination due to unresolved sources, a solid confirmation requires further investigations. We discuss which measurements will be most relevant in order to resolve the remaining degeneracy.  
  Address [Luque, P. De La Torre] Stockholm Univ, Alba Nova, S-10691 Stockholm, Sweden, Email: pedro.delatorreluque@fysik.su.se  
  Corporate Author Thesis  
  Publisher Edp Sciences S A Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-6361 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000960963900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5508  
Permanent link to this record
 

 
Author Choi, K.Y.; Lopez-Fogliani, D.E.; Muñoz, C.; Ruiz de Austri, R. url  doi
openurl 
  Title (up) Gamma-ray detection from gravitino dark matter decay in the μnu SSM Type Journal Article
  Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 028 - 14pp  
  Keywords dark matter theory; supersymmetry and cosmology; gamma ray experiments  
  Abstract The μnu SSM provides a solution to the mu-problem of the MSSM and explains the origin of neutrino masses by simply using right-handed neutrino superfields. Given that R-parity is broken in this model, the gravitino is a natural candidate for dark matter since its lifetime becomes much longer than the age of the Universe. We consider the implications of gravitino dark matter in the μnu SSM, analyzing in particular the prospects for detecting gamma rays from decaying gravitinos. If the gravitino explains the whole dark matter component, a gravitino mass larger than 20 GeV is disfavored by the isotropic diffuse photon background measurements. On the other hand, a gravitino with a mass range between 0.1 – 20 GeV gives rise to a signal that might be observed by the FERMI satellite. In this way important regions of the parameter space of the μnu SSM can be checked.  
  Address [Choi, Ki-Young; Munoz, Carlos] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: kiyoung.choi@pusan.ac.kr  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276103000006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 464  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva