toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pierre Auger Collaboration (Aab, A. et al); Pastor, S. url  doi
openurl 
  Title (up) A targeted search for point sources of EeV neutrons Type Journal Article
  Year 2014 Publication Astrophysical Journal Letters Abbreviated Journal Astrophys. J. Lett.  
  Volume 789 Issue 2 Pages L34 - 7pp  
  Keywords cosmic rays; Galaxy: disk; methods: data analysis  
  Abstract A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine “target sets,” in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy.  
  Address [Aab, A.; Buchholz, P.; Erfani, M.; Frohlich, U.; Heimann, P.; Homola, P.; Niechciol, M.; Ochilo, L.; Risse, M.; Yushkov, A.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-8205 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339876800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1885  
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title (up) Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory Type Journal Article
  Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 635 Issue 1 Pages 92-102  
  Keywords Cosmic rays; Radio detection; Analysis software; Detector simulation  
  Abstract The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs “radio-hybrid” measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.  
  Address [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Kuempel, D.; Nierstenhoefer, N.; Oliva, P.; Rautenberg, J.; Szadkowski, Z.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany, Email: auger_pc@fnal.gov  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289317100017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 606  
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title (up) Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 022 - 17pp  
  Keywords ultra high energy cosmic rays; cosmic ray experiments  
  Abstract The Pierre Auger Collaboration has reported. evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > E-th = 5.5 x 10(19) eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > E-th are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above E-th/Z (for illustrative values of Z = 6, 13, 26). If the anisotropies above E-th are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.  
  Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal, Email: auger_spokepersons@fnal.gov  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292332400022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 676  
Permanent link to this record
 

 
Author Johannesson, G.; Ruiz de Austri, R.; Vincent, A.C.; Moskalenko, I.V.; Orlando, E.; Porter, T.A.; Strong, A.W.; Trotta, R.; Feroz, F.; Graff, P.; Hobson, M.P. url  doi
openurl 
  Title (up) Bayesian analysis of cosmic-ray propagation: evidence against homogeneous diffusion Type Journal Article
  Year 2016 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 824 Issue 1 Pages 16 - 19pp  
  Keywords astroparticle physics; cosmic rays; diffusion; Galaxy: general; ISM: general; methods: statistical  
  Abstract We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to separate out low-mass isotopes (p, (p) over bar and He) from the usual light elements (Be, B, C, N, and O). We find that the propagation parameters that best-fit p, (p) over bar, and He data are significantly different from those that fit light elements, including the B/C and Be-10/Be-9 secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests that each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update.  
  Address [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000377937300016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2727  
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S. url  doi
openurl 
  Title (up) Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory Type Journal Article
  Year 2013 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 009 - 19pp  
  Keywords ultra high energy cosmic rays; cosmic ray experiments  
  Abstract We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.  
  Address [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina, Email: auger_spokepersons@fnal.gov  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000320161400011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1497  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva