toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title (up) Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P11006 - 20pp  
  Keywords Cherenkov detectors; Cherenkov and transition radiation; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Dark Matter detectors (WIMPs, axions, etc.)  
  Abstract XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.  
  Address [Aprile, E.; Contreras, H.; Goetzke, L. W.; Fernandez, A. J. Melgarejo; Messina, M.; Plante, G.; Rizzo, A.] Columbia Univ, Dept Phys, New York, NY 10027 USA, Email: dr.serena.fattori@gmail.com  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345026000020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2061  
Permanent link to this record
 

 
Author HISPEC-DESPEC Collaboration (Polettini, M. et al); Algora, A.; Morales, A.I.; Orrigo, S.E.A. doi  openurl
  Title (up) Decay studies in the A similar to 225 Po-Fr region from the DESPEC campaign at GSI in 2021 Type Journal Article
  Year 2022 Publication Nuovo Cimento C Abbreviated Journal Nuovo Cim. C  
  Volume 45 Issue 5 Pages 125 - 4pp  
  Keywords  
  Abstract The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region.  
  Address [Polettini, M.; Benzoni, G.; Genna, D.; Bracco, A.; Bottoni, S.; Camera, F.; Crespi, F. C. L.; Gamba, E. R.; Leoni, S.; Million, B.; Porzio, C.; Wieland, O.; Ziliani, S.] Univ Milan, Dipartimento Fis, Milan, Italy  
  Corporate Author Thesis  
  Publisher Soc Italiana Fisica Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2037-4909 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000819174100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5292  
Permanent link to this record
 

 
Author Guadilla, V. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Valencia, E. url  doi
openurl 
  Title (up) Determination of beta-decay ground state feeding of nuclei of importance for reactor applications Type Journal Article
  Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 102 Issue 6 Pages 064304 - 12pp  
  Keywords  
  Abstract In beta-decay studies the determination of the decay probability to the ground state (g.s.) of the daughter nucleus often suffers from large systematic errors. The difficulty of the measurement is related to the absence of associated delayed gamma-ray emission. In this work we revisit the 4 pi gamma – beta method proposed by Greenwood and collaborators in the 1990s, which has the potential to overcome some of the experimental difficulties. Our interest is driven by the need to determine accurately the beta-intensity distributions of fission products that contribute significantly to the reactor decay heat and to the antineutrinos emitted by reactors. A number of such decays have large g.s. branches. The method is relevant for nuclear structure studies as well. Pertinent formulas are revised and extended to the special case of beta-delayed neutron emitters, and the robustness of the method is demonstrated with synthetic data. We apply it to a number of measured decays that serve as test cases and discuss the features of the method. Finally, we obtain g.s. feeding intensities with reduced uncertainty for four relevant decays that will allow future improvements in antineutrino spectrum and decay heat calculations using the summation method.  
  Address [Guadilla, V; Tain, J. L.; Algora, A.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000595153500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4626  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title (up) Exclusion of leptophilic dark matter models using XENON100 electronic recoil data Type Journal Article
  Year 2015 Publication Science Abbreviated Journal Science  
  Volume 349 Issue 6250 Pages 851-854  
  Keywords  
  Abstract Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 x 10(-35) cm(2) for particle masses of m(chi) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4 sigma confidence level, mirror dark matter at 3.6 sigma, and luminous dark matter at 4.6 sigma.  
  Address  
  Corporate Author Thesis  
  Publisher Amer Assoc Advancement Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000359832700045 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2490  
Permanent link to this record
 

 
Author Guadilla, V. et al; Algora, A.; Tain, J.L.; Agramunt, J.; Jordan, M.D.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Valencia, E.; Gelletly, W.; Monserrate, M. url  doi
openurl 
  Title (up) Experimental study of Tc-100 beta decay with total absorption gamma-ray spectroscopy Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 96 Issue 1 Pages 014319 - 10pp  
  Keywords  
  Abstract The beta decay of Tc-100 has been studied by using the total absorption gamma-ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyvaskyla. In this work the new Decay Total Absorption gamma-ray Spectrometer in coincidence with a cylindrical plastic beta detector has been employed. The beta intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximation framework are also reported. Comparison of these calculations with our measurement serves as a benchmark for calculations of the double beta decay of Mo-100.  
  Address [Guadilla, V.; Algora, A.; Tain, J. L.; Agramunt, J.; Jordan, D.; Montaner-Piza, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.; Gelletly, W.; Monserrate, M.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: guadilla@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406526600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3225  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva