toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J. doi  openurl
  Title (up) On the Magnetic Field of a Finite Solenoid Type Journal Article
  Year 2023 Publication IEEE Transactions on Magnetics Abbreviated Journal IEEE Trans. Magn.  
  Volume 59 Issue 4 Pages 7000106 - 6pp  
  Keywords Solenoids; Magnetic fields; Integral equations; Magnetostatics; Magnetostatic waves; Particle beams; NASA; Elliptic integrals; finite solenoid; magnetostatics  
  Abstract The magnetostatic field of a finite solenoid with infinitely thin walls carrying a dc current oriented in the azimuthal direction is calculated everywhere in space in terms of complete elliptic integrals by direct integration of the Biot-Savart law. The solution is particularized near the solenoid axis and in the midplane perpendicular to the axis obtaining expressions that agree with some typical approximations that are made in introductory courses of electromagnetism or in the technical literature. The range of validity of these approximations has been studied comparing them with the obtained general expression.  
  Address [Martin-Luna, P.; Gimeno, B.; Gonzalez-Iglesias, D.; Esperante, D.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Fuster, J.] Univ Valencia, Inst Corpuscular Phys IFIC, CSIC, Paterna 46980, Spain, Email: Pablo.Martin@uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9464 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001006992700005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5552  
Permanent link to this record
 

 
Author Gonzalez-Iglesias, D.; Aksoy, A.; Esperante, D.; Gimeno, B.; Latina, A.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J. doi  openurl
  Title (up) X-band RF photoinjector design for the CompactLight project Type Journal Article
  Year 2021 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1014 Issue Pages 165709 - 10pp  
  Keywords Photoinjector; X-band; Electron sources; Free electron laser; Beam generation  
  Abstract RF photoinjectors have been under development for several decades to provide the high-brightness electron beams required for X-ray Free Electron Lasers. This paper proposes a photoinjector design that meets the Horizon 2020 CompactLight design study requirements. It consists of a 5.6-cell, X-band (12 GHz) RF gun, an emittance-compensating solenoid and two X-band traveling-wave structures that accelerate the beam out of the space-charge-dominated regime. The RF gun is intended to operate with a cathode gradient of 200 MV/m, and the TW structures at a gradient of 65 MV/m. The shape of the gun cavity cells was optimized to reduce the peak electric surface field. An assessment of the gun RF breakdown likelihood is presented as is a multipacting analysis for the gun coaxial coupler. RF pulse heating on the gun inner surfaces is also evaluated and beam dynamics simulations of the 100 MeV photoinjector are summarized.  
  Address [Gonzalez-Iglesias, D.; Esperante, D.; Gimeno, B.; Boronat, M.; Blanch, C.; Fuster-Martinez, N.; Martinez-Reviriego, P.; Martin-Luna, P.; Fuster, J.] Univ Valencia Consejo Super Invest Cient, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: daniel.gonzalez-iglesias@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704382900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4983  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva