|   | 
Details
   web
Records
Author Ayala, C.; Cvetic, G.; Kogerler, R.
Title (down) Lattice-motivated holomorphic nearly perturbative QCD Type Journal Article
Year 2017 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 44 Issue 7 Pages 075001 - 30pp
Keywords perturbative QCD; lattice QCD; QCD phenomenology; resummation
Abstract Newer lattice results indicate that, in the Landau gauge at low spacelike momenta, the gluon propagator and the ghost dressing function are finite non-zero. This leads to a definition of the QCD running coupling, in a specific scheme, that goes to zero at low spacelike momenta. We construct a running coupling which fulfills these conditions, and at the same time reproduces to a high precision the perturbative behavior at high momenta. The coupling is constructed in such a way that it reflects qualitatively correctly the holomorphic (analytic) behavior of spacelike observables in the complex plane of the squared momenta, as dictated by the general principles of quantum field theories. Further, we require the coupling to reproduce correctly the nonstrange semihadronic decay rate of tau lepton which is the best measured low-momentum QCD observable with small higher-twist effects. Subsequent application of the Borel sum rules to the V + A spectral functions of tau lepton decays, as measured by OPAL Collaboration, determines the values of the gluon condensate and of the V + A six-dimensional condensate, and reproduces the data to a significantly higher precision than the usual (MS) over bar running coupling.
Address [Ayala, Cesar] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: Gorazd.Cvetic@usm.cl
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000402509800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3167
Permanent link to this record
 

 
Author Baglio, J.; Campanario, F.; Glaus, S.; Muhlleitner, M.; Ronca, J.; Spira, M.; Streicher, J.
Title (down) Higgs-pair production via gluon fusion at hadron colliders: NLO QCD corrections Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 181-50pp
Keywords Higgs Physics; Perturbative QCD
Abstract Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leading top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.
Address [Baglio, Julien] CERN, Theoret Phys Dept, CH-1211 Geneva 23, Switzerland, Email: julien.baglio@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000531394200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4391
Permanent link to this record
 

 
Author Papavassiliou, J.
Title (down) Emergence of mass in the gauge sector of QCD Type Journal Article
Year 2022 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 46 Issue 11 Pages 112001 - 23pp
Keywords non perturbative QCD; Schwinger-Dyson equations; Schwinger functions
Abstract It is currently widely accepted that gluons, while massless at the level of the fundamental QCD Lagrangian, acquire an effective mass through the non-Abelian implementation of the classic Schwinger mechanism. The key dynamical ingredient that triggers the onset of this mechanism is the formation of composite massless poles inside the fundamental vertices of the theory. These poles enter the evolution equation of the gluon propagator and nontrivially affect the way the Slavnov-Taylor identities of the vertices are resolved, inducing a smoking-gun displacement in the corresponding Ward identities. In this article, we present a comprehensive review of the pivotal concepts associated with this dynamical scenario, emphasizing the synergy between functional methods and lattice simulations and highlighting recent advances that corroborate the action of the Schwinger mechanism in QCD.
Address [Papavassiliou, J.] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: joannis.papavassiliou@uv.es
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000873336100001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5398
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.J.; Driencourt-Mangin, F.; Plenter, J.; Ramirez-Uribe, S.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.; Tracz, S.
Title (down) Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the loop-tree duality at higher orders Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 163 - 12pp
Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes
Abstract We present the first comprehensive analysis of the unitarity thresholds and anomalous thresholds of scattering amplitudes at two loops and beyond based on the loop- tree duality, and show how non-causal unphysical thresholds are locally cancelled in an efficient way when the forest of all the dual on-shell cuts is considered as one. We also prove that soft and collinear singularities at two loops and beyond are restricted to a compact region of the loop three-momenta, which is a necessary condition for implementing a local cancellation of loop infrared singularities with the ones appearing in real emission; without relying on a subtraction formalism.
Address [Aguilera-Verdugo, J. Jesus; Driencourt-Mangin, Felix; Plenter, Judith; Ramirez-Uribe, Selomit; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.; Tracz, Szymon] Univ Valencia, Consejo Super Invest Cient, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000513535500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4288
Permanent link to this record
 

 
Author Aguilera-Verdugo, J.J.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.
Title (down) Causal representation of multi-loop Feynman integrands within the loop-tree duality Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 69 - 26pp
Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes
Abstract The numerical evaluation of multi-loop scattering amplitudes in the Feynman representation usually requires to deal with both physical (causal) and unphysical (non-causal) singularities. The loop-tree duality (LTD) offers a powerful framework to easily characterise and distinguish these two types of singularities, and then simplify analytically the underling expressions. In this paper, we work explicitly on the dual representation of multi-loop Feynman integrals generated from three parent topologies, which we refer to as Maximal, Next-to-Maximal and Next-to-Next-to-Maximal loop topologies. In particular, we aim at expressing these dual contributions, independently of the number of loops and internal configurations, in terms of causal propagators only. Thus, providing very compact and causal integrand representations to all orders. In order to do so, we reconstruct their analytic expressions from numerical evaluation over finite fields. This procedure implicitly cancels out all unphysical singularities. We also interpret the result in terms of entangled causal thresholds. In view of the simple structure of the dual expressions, we integrate them numerically up to four loops in integer space-time dimensions, taking advantage of their smooth behaviour at integrand level.
Address [Jesus Aguilera-Verdugo, J.; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000609437600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4697
Permanent link to this record