|   | 
Details
   web
Records
Author Labiche, M. et al; Caballero, L.; Rubio, B.
Title (down) TIARA: A large solid angle silicon array for direct reaction studies with radioactive beams Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 614 Issue 3 Pages 439-448
Keywords Position sensitive silicon detectors; Nucleon transfer reactions; Radioactive beams; Inverse kinematics
Abstract A compact, quasi-4 pi position sensitive silicon array. TIARA, designed to study direct reactions induced by radioactive beams in inverse kinematics is described here. The Transfer and Inelastic All-angle Reaction Array (TIARA) consists of 8 resistive charge division detectors forming an octagonal barrel around the target and a set of double-sided silicon-strip annular detectors positioned at each end of the barrel. The detector was coupled to the gamma-ray array EXOGAM and the spectrometer VAMOS at the GANIL Laboratory to demonstrate the potential of such an apparatus with radioactive beams. The N-14(d,p)N-15 reaction, well known in direct kinematics, has been carried out in inverse kinematics for that purpose. The observation of the N-15 ground state and excited states at 7.16 and 7.86 MeV is presented here as well as the comparison of the measured proton angular distributions with DWBA calculations. Transferred l-values are in very good agreement with both theoretical calculations and previous experimental results obtained in direct kinematics.
Address [Labiche, M.; Lemmon, R. C.; Appleton, S.; Faiz, K.; Pucknell, V. F. E.; Warner, D. D.] STFC Daresbury Lab, Nucl Phys Grp, Warrington WA4 4AD, Cheshire, England, Email: marc.labiche@stfc.ac.uk
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000276001800008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 477
Permanent link to this record
 

 
Author Tain, J.L.; Agramunt, J.; Algora, A.; Aprahamian, A.; Cano-Ott, D.; Fraile, L.M.; Guerrero, C.; Jordan, M.D.; Mach, H.; Martinez, T.; Mendoza, E.; Mosconi, M.; Nolte, R.
Title (down) The sensitivity of LaBr3:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 774 Issue Pages 17-24
Keywords Neutron sensitivity; Scintillation detectors; Lanthanum bromide; Geant4 simulations; Nuclear data libraries
Abstract The neutron sensitivity of a cylindrical circle minus 1.5 in x 1.5 in LaBr3:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to gamma-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.
Address [Tain, J. L.; Agramunt, J.; Algora, A.; Jordan, M. D.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-28040 Valencia, Spain, Email: tain@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000347407800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2076
Permanent link to this record
 

 
Author n_TOF Collaboration (Giubrone, G. et al); Tain, J.L.
Title (down) The Role of Fe and Ni for S-process Nucleosynthesis and Innovative Nuclear Technologies Type Journal Article
Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.
Volume 59 Issue 2 Pages 2106-2109
Keywords Neutron capture cross sections; Neutron time of flight facility; C(6)D(6) detectors; Pulse height weighting technique; Nuclear astrophysics; Advanced nuclear systems
Abstract The accurate measurement of neutron capture cross sections of all Fe and Ni isotopes is important for disentangling the contribution of the s-process and the r-process to the stellar nucleosynthesis of elements in the mass range 60 < A < 120. At the same time, Fe and Ni are important components of structural materials and improved neutron cross section data is relevant in the design of new nuclear systems. With the aim of obtaining improved capture data on all stable iron and nickel isotopes, a program of measurements has been launched at the CERN Neutron Time of Flight Facility n_TOF.
Address [Giubrone, G; Tain, JL] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46003 Valencia, Spain, Email: tain@ific.uv.es
Corporate Author Thesis
Publisher Korean Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0374-4884 ISBN Medium
Area Expedition Conference
Notes WOS:000294080700158 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 743
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title (down) The rapid atmospheric monitoring system of the Pierre Auger Observatory Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages P09001 - 41pp
Keywords Large detector systems for particle and astroparticle physics; Real-time monitoring; Control and monitor systems online
Abstract The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or “rapid”) monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction.
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, P-1100 Lisbon, Portugal
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000309547100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1233
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title (down) The positioning system of the ANTARES Neutrino Telescope Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages T08002 - 20pp
Keywords Timing detectors; Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Detector alignment and calibration methods (lasers, sources, particle-beams); Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases)
Abstract The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.
Address [Anton, G.; Eberl, T.; Enzenhoefer, A.; Folger, F.; Fritsch, U.; Graf, K.; Herold, B.; Hoessl, J.; Kalekin, O.; Kappes, A.; Katz, U.; Kopper, C.; Lahmann, R.; Meli, A.; Motz, H.; Neff, M.; Richardt, C.; Richter, R.; Roensch, K.; Schoeck, F.; Seitz, T.; Shanidze, R.; Spies, A.; Wagner, S.] Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany, Email: juergen.hoessl@physik.uni-erlangen.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000308869800043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1176
Permanent link to this record