|   | 
Details
   web
Records
Author Cannoni, M.; Ellis, J.; Gomez, M.E.; Lola, S.; Ruiz de Austri, R.
Title (up) Supersymmetry searches in GUT models with non-universal scalar masses Type Journal Article
Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 041 - 23pp
Keywords particle physics – cosmology connection; supersymmetry and cosmology
Abstract We study SO(10). SU(5) and flipped SU(5) GUT models with non-universal soft supersynrimetry-breaking scalar masses, exploring how they are constrained by LIIC super-synrimetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the-various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predicts the possibility of (t) over tilde (1-chi) coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing E-T, charginos and stops will be able to constrain the different GUT models in complementary ways, as will the Xenon 1 ton and Darwin dark matter scattering experiments and future FERMI or CIA gamma-ray searches.
Address [Cannoni, M.; Gomez, M. E.] Univ Huelva, Fac Ciencias Expt, Dept Fis Aplicada, Huelva 21071, Spain, Email: mirco.ccannoni@dfa.uhu.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000375608200043 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2674
Permanent link to this record
 

 
Author Ellis, J.; Madigan, M.; Mimasu, K.; Sanz, V.; You, T.
Title (up) Top, Higgs, diboson and electroweak fit to the Standard Model effective field theory Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 279 - 78pp
Keywords Effective Field Theories; Beyond Standard Model; Higgs Physics
Abstract The search for effective field theory deformations of the Standard Model (SM) is a major goal of particle physics that can benefit from a global approach in the framework of the Standard Model Effective Field Theory (SMEFT). For the first time, we include LHC data on top production and differential distributions together with Higgs production and decay rates and Simplified Template Cross-Section (STXS) measurements in a global fit, as well as precision electroweak and diboson measurements from LEP and the LHC, in a global analysis with SMEFT operators of dimension 6 included linearly. We present the constraints on the coefficients of these operators, both individually and when marginalised, in flavour-universal and top-specific scenarios, studying the interplay of these datasets and the correlations they induce in the SMEFT. We then explore the constraints that our linear SMEFT analysis imposes on specific ultra-violet completions of the Standard Model, including those with single additional fields and low-mass stop squarks. We also present a model-independent search for deformations of the SM that contribute to between two and five SMEFT operator coefficients. In no case do we find any significant evidence for physics beyond the SM. Our underlying Fitmaker public code provides a framework for future generalisations of our analysis, including a quadratic treatment of dimension-6 operators.
Address [Ellis, John; Mimasu, Ken] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: john.ellis@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000658918100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4857
Permanent link to this record