|   | 
Details
   web
Records
Author Deppisch, F.F.; Desai, N.; Valle, J.W.F.
Title (up) Is charged lepton flavor violation a high energy phenomenon? Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 89 Issue 5 Pages 051302 - 5pp
Keywords
Abstract Searches for rare processes such as μ-> e gamma put stringent limits on lepton flavor violation expected in many beyond-the-Standard-Model physics scenarios. This usually precludes the observation of flavor violation at high energy colliders such as the LHC. We here discuss a scenario where right-handed neutrinos are produced via a Z' portal but which can only decay via small flavor violating couplings. Consequently, the process rate is unsuppressed by the small couplings and can be visible despite unobservably small μ-> e gamma rates.
Address [Deppisch, Frank F.; Desai, Nishita] UCL, Dept Phys & Astron, London WC1E 6BT, England, Email: f.deppisch@ucl.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000334304700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1774
Permanent link to this record
 

 
Author Deppisch, F.F.; Hirsch, M.; Pas, H.
Title (up) Neutrinoless double-beta decay and physics beyond the standard model Type Journal Article
Year 2012 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 39 Issue 12 Pages 124007 - 23pp
Keywords
Abstract Neutrinoless double-beta decay is the most powerful tool to probe not only for Majorana neutrino masses but for lepton number violating physics in general. We discuss relations between lepton number violation, double-beta decay and neutrino mass, review a general Lorentz-invariant parametrization of the double-beta decay rate, highlight a number of different new physics models showing how different mechanisms can trigger double-beta decay and, finally, discuss possibilities of discriminating and testing these models and mechanisms in complementary experiments.
Address [Deppisch, Frank F.] UCL, Dept Phys & Astron, London, England, Email: f.deppisch@ucl.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000315520400008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1347
Permanent link to this record
 

 
Author Cepedello, R.; Deppisch, F.F.; Gonzalez, L.; Hati, C.; Hirsch, M.
Title (up) Neutrinoless Double-Beta Decay with Nonstandard Majoron Emission Type Journal Article
Year 2019 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 122 Issue 18 Pages 181801 - 6pp
Keywords
Abstract We present a novel mode of neutrinoless double-beta decay with emission of a light Majoron-like scalar particle phi. We assume it couples via an effective seven-dimensional operator with a (V + A) lepton current and (V +/- A) quark currents leading to a long-range contribution that is unsuppressed by the light neutrino mass. We calculate the total double-beta decay rate and determine the fully differential shape for this mode. We find that future double-beta decay searches are sensitive to scales of the order Lambda(NP) approximate to 1 TeV for the effective operator and a light scalar m(phi) < 0.2 MeV, based on ordinary double-beta decay Majoron searches. The angular and energy distributions can deviate considerably from that of two-neutrino double-beta decay, which is the main background. We point out possible ultraviolet completions where such an effective operator can emerge.
Address [Cepedello, Ricardo; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: ricepe@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000467042800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4002
Permanent link to this record