|   | 
Details
   web
Records
Author Barenboim, G.; Salvado, J.
Title (up) Cosmology and CPT violating neutrinos Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 11 Pages 766 - 18pp
Keywords
Abstract The combination charge conjugation-parity-time reversal (CPT) is a fundamental symmetry in our current understanding of nature. As such, testing CPT violation is a strongly motivated path to explore new physics. In this paper we study CPT violation in the neutrino sector, giving for the first time a bound, for a fundamental particle, in the CPT violating particle-antiparticle gravitational mass difference. We argue that cosmology is nowadays the only data sensitive to CPT violation for the neutrino-antineutrino mass splitting and we use the latest data release from Planck combined with the current baryonic-acoustic-oscillation measurement to perform a full cosmological analysis. To show the potential of the future experiments we also show the results for Euclid, a next generation large scale structure experiment.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000415376100002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3378
Permanent link to this record
 

 
Author Barenboim, G.; Ternes, C.A.; Tortola, M.
Title (up) CPT and CP, an entangled couple Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 155 - 12pp
Keywords CP violation; Neutrino Physics; Beyond Standard Model
Abstract Even though it is undoubtedly very appealing to interpret the latest T2K results as evidence of CP violation, this claim assumes CPT conservation in the neutrino sector to an extent that has not been tested yet. As we will show, T2K results are not robust against a CPT-violating explanation. On the contrary, a CPT-violating CP-conserving scenario is in perfect agreement with current neutrino oscillation data. Therefore, to elucidate whether T2K results imply CP or CPT violation is of utter importance. We show that, even after combining with data from NO nu A and from reactor experiments, no claims about CP violation can be made. Finally, we update the bounds on CPT violation in the neutrino sector.
Address [Barenboim, Gabriela; Ternes, Christoph A.; Tortola, Mariam] Univ Valencia, CSIC, Dept Fis Teor, C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000555932400005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4492
Permanent link to this record
 

 
Author DUNE Collaboration (Abud, A.A. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Molina Bueno, L.; Novella, P.; Rubio, F.C.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F.
Title (up) Design, construction and operation of the ProtoDUNE-SP Liquid Argon TPC Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 17 Issue 1 Pages P01005 - 111pp
Keywords Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs, CMOS imagers, etc); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators); Time projection Chambers (TPC)
Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 x 6 x 7.2 m3. The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components.
Address [Fani, M.; Isenhower, L.] Abilene Christian Univ, Abilene, TX 79601 USA, Email: Stefania.Bordoni@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000757487100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5131
Permanent link to this record
 

 
Author Barenboim, G.; Panotopoulos, G.
Title (up) Direct neutralino searches in the NMSSM with gravitino LSP in the degenerate scenario Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 027 - 16pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Supersymmetric Standard Model
Abstract In the present work a two-component dark matter model is studied adopting the degenerate scenario in the R-parity conserving NMSSM. The gravitino LSP and the neutralino NLSP are extremely degenerate in mass, avoiding the BBN bounds and obtaining a high reheating temperature for thermal leptogenesis. In this model both gravitino (absolutely stable) and neutralino (quasi-stable) contribute to dark matter, and direct detection searches for neutralino are discussed. Points that survive all the constraints correspond to a singlino-like neutralino.
Address [Barenboim, G] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000294901400055 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 771
Permanent link to this record
 

 
Author Barenboim, G.; Rasero, J.
Title (up) Electroweak baryogenesis window in non standard cosmologies Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 028 - 20pp
Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics
Abstract In this work we show that the new bounds on the Higgs mass are more than difficult to reconcile with the strong constraints on the physical parameters of the Standard Model and the Minimal Supersymmetric Standard Model imposed by the preservation of the baryon asymmetry. This bound can be weakened by assuming a nonstandard cosmology at the time of the electroweak phase transition, reverting back to standard cosmology by BBN time. Two explicit examples are an early period of matter dominated expansion due to a heavy right handed neutrino (see-saw scale), or a nonstandard braneworld expansion.
Address [Barenboim, Gabriela] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: gabriela.barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000307298400028 Approved no
Is ISI yes International Collaboration
Call Number IFIC @ pastor @ Serial 1158
Permanent link to this record