toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Figueroa, D.G.; Florio, A.; Torrenti, F.; Valkenburg, W. url  doi
openurl 
  Title (down) The art of simulating the early universe. Part I. Integration techniques and canonical cases Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 035 - 108pp  
  Keywords particle physics – cosmology connection; physics of the early universe; cosmological phase transitions; inflation  
  Abstract We present a comprehensive discussion on lattice techniques for the simulation of scalar and gauge field dynamics in an expanding universe. After reviewing the continuum formulation of scalar and gauge field interactions in Minkowski and FLRW backgrounds, we introduce the basic tools for the discretization of field theories, including lattice gauge invariant techniques. Following, we discuss and classify numerical algorithms, ranging from methods of O(delta t(2)) accuracy like staggered leapfrog and Verlet integration, to Runge-Kutta methods up to O(delta t(4)) accuracy, and the Yoshida and Gauss-Legendre higher-order integrators, accurate up to O(delta t(10)) We adapt these methods for their use in classical lattice simulations of the non-linear dynamics of scalar and gauge fields in an expanding grid in 3+1 dimensions, including the case of 'self-consistent' expansion sourced by the volume average of the fields' energy and pressure densities. We present lattice formulations of canonical cases of: i) Interacting scalar fields, ii) Abelian U(1) gauge theories, and iii) Non-Abelian SU(2) gauge theories. In all three cases we provide symplectic integrators, with accuracy ranging from O(delta t(2)) up to O(delta t(10)) For each algorithm we provide the form of relevant observables, such as energy density components, field spectra and the Hubble constraint. We note that all our algorithms for gauge theories always respect the Gauss constraint to machine precision, including when 'self-consistent' expansion is considered. As a numerical example we analyze the post-inflationary dynamics of an oscillating inflaton charged under SU(2) x U(1). We note that the present manuscript is meant to be part of the theoretical basis for the code CosmoLattice, a multi-purpose MPI-based package for simulating the non-linear evolution of field theories in an expanding universe, publicly available at http://www.cosrnolattice.net.  
  Address [Figueroa, Daniel G.] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Valencia, Spain, Email: daniel.figueroa@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000644501000026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4822  
Permanent link to this record
 

 
Author Novella, P. url  doi
openurl 
  Title (down) The antineutrino energy structure in reactor experiments Type Journal Article
  Year 2015 Publication Advances in High Energy Physics Abbreviated Journal Adv. High. Energy Phys.  
  Volume 2015 Issue Pages 364392 - 12pp  
  Keywords  
  Abstract The recent observation of an energy structure in the reactor antineutrino spectrum is reviewed. The reactor experiments Daya Bay, Double Chooz, and RENO have reported a consistent excess of antineutrinos deviating from the flux predictions, with a local significance of about 4 sigma between 4 and 6 MeV of the positron energy spectrum. The possible causes of the structure are analyzed in this work, along with the different experimental approaches developed to identify its origin. Considering the available data and results from the three experiments, the most likely explanation concerns the reactor flux predictions and the associated uncertainties. Therefore, the different current models are described and compared. The possible sources of incompleteness or inaccuracy of such models are discussed, as well as the experimental data required to improve their precision.  
  Address [Novella, Pau] CSIC, Inst Fis Corpuscular IFIC, Paterna 46980, Spain, Email: pau.novella@ific.uv.es  
  Corporate Author Thesis  
  Publisher Hindawi Publishing Corp Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-7357 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000367926000001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2531  
Permanent link to this record
 

 
Author ANTARES Collaboration (Ageron, M. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title (down) The ANTARES telescope neutrino alert system Type Journal Article
  Year 2012 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 35 Issue 8 Pages 530-536  
  Keywords ANTARES; Neutrino astronomy; Transient sources; Optical follow-up  
  Abstract The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.  
  Address [Ageron, M.; Al Samarai, I.; Aubert, J. -J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Costantini, H.; Coyle, P.; Curtil, C.; Ernenwein, J-P.; Escoffier, S.; Galata, S.; Halladjian, G.; Hallewell, G.; Payre, P.; Picot-Clemente, N.; Riviere, C.; Vecchi, M.] Aix Marseille Univ, CPPM, CNRS, IN2P3, Marseille, France, Email: vecchi@cppm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301312000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 933  
Permanent link to this record
 

 
Author Yepes, H. doi  openurl
  Title (down) The ANTARES neutrino detector instrumentation Type Journal Article
  Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 7 Issue Pages C01022 - 9pp  
  Keywords Large detector-systems performance; Performance of High Energy Physics Detectors; Detector alignment and calibration methods (lasers, sources, particle-beams)  
  Abstract ANTARES is actually the fully operational and the largest neutrino telescope in the Northern hemisphere. Located in the Mediterranean Sea, it consists of a 3D array of 885 photomultiplier tubes (PMTs) arranged in 12 detection lines (25 storeys each), able to detect the Cherenkov light induced by upgoing relativistic muons produced in the interaction of high energy cosmic neutrinos with the detector surroundings. Among its physics goals, the search for neutrino astrophysical sources and the indirect detection of dark matter particles coming from the sun are of particular interest. To reach these goals, good accuracy in track reconstruction is mandatory, so several calibration systems for timing and positioning have been developed. In this contribution we will present the design of the detector, calibration systems, associated equipment and its performance on track reconstruction.  
  Address Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain, Email: Harold.Yepes@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303806200022 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1041  
Permanent link to this record
 

 
Author Marco-Hernandez, R.; Alves, D.; Angoletta, M.E.; Marqversen, O.; Molendijk, J.; Oponowicz, E.; Ruffieux, R.; Sanchez-Quesada, J.; Soby, L. doi  openurl
  Title (down) The AD and ELENA orbit, trajectory and intensity measurement systems Type Journal Article
  Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 12 Issue Pages P07024 - 24pp  
  Keywords Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors); Data acquisition concepts; Digital electronic circuits; Digital signal processing (DSP)  
  Abstract This paper describes the new Antiproton Decelerator (AD) orbit measurement system and the Extra Low ENergy Antiproton ring (ELENA) orbit, trajectory and intensity measurement system. The AD machine at European Organization for Nuclear Research (CERN) is presently being used to decelerate antiprotons from 3.57 GeV/c to 100 MeV/c for matter vs anti-matter comparative studies. The ELENA machine, presently under commissioning, has been designed to provide an extra deceleration stage down to 13.7 MeV/c. The AD orbit system is based on 32 horizontal and 27 vertical electrostatic Beam Position Monitor (BPM) fitted with existing low noise front-end amplifiers while the ELENA system consists of 24 BPMs equipped with new low-noise head amplifiers. In both systems the front-end amplifiers generate a difference (delta) and a sum (sigma) signal which are sent to the digital acquisition system, placed tens of meters away from the AD or ELENA rings, where they are digitized and further processed. The beam position is calculated by dividing the difference signal by the sum signal either using directly the raw digitized data for measuring the turn-by-turn trajectory in the ELENA system or after down-mixing the signals to baseband for the orbit measurement in both machines. The digitized sigma signal will be used in the ELENA system to calculate the bunched beam intensity and the Schottky parameters with coasting beam after passing through different signal processing chain. The digital acquisition arrangement for both systems is based on the same hardware, also used in the ELENA Low Level Radio Frequency (LLRF) system, which follows the VME Switched Serial (VXS) enhancement of the Versa Module Eurocard 64x extension (VME64x) standard and includes VITA 57 standard Field Programmable Gate Array Mezzanine Card (FMC). The digital acquisition Field Programmable Gate Array (FPGA) andDigital Signal Processor (DSP) firmware sharesmany common functionalities with the LLRF system but has been tailored for this measurement application in particular. Specific control and acquisition software has been developed for these systems. Both systems are installed in AD and ELENA. The AD orbit system currently measures the orbit in AD while the ELENA system is being used in the commissioning of the ELENA ring.  
  Address [Marco-Hernandez, R.; Alves, D.; Angoletta, M. E.; Marqversen, O.; Molendijk, J.; Oponowicz, E.; Ruffieux, R.; Sanchez-Quesada, J.; Soby, L.] CERN, European Org Nucl Res, Beams Dept, 385 Route Meyrin, Meyrin, Switzerland, Email: Ricardo.Marco@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406392600024 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3233  
Permanent link to this record
 

 
Author Poley, L. et al; Bernabeu, J.; Civera, J.V.; Lacasta, C.; Leon, P.; Platero, A.; Platero, V; Solaz, C.; Soldevila, U.; Vidal, G. url  doi
openurl 
  Title (down) The ABC130 barrel module prototyping programme for the ATLAS strip tracker Type Journal Article
  Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 15 Issue 9 Pages P09004 - 78pp  
  Keywords Detector design and construction technologies and materials; Si microstrip and pad detectors; Radiation-hard detectors; Front-end electronics for detector readout  
  Abstract For the Phase-II Upgrade of the ATLAS Detector [1], its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100% silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-250) [2, 3] and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.  
  Address [Poley, L.; Anderssen, E.; Ciocio, A.; Cornell, E.; Haber, C.; Haugen, T. E.; Heim, T.; Johnson, T. A.; Krizka, K.; Labitan, C.; Li, B.; Li, C.; MacFadyen, R.; Mladina, E.; Ottino, G.; Sanethavong, P.; Santpur, S. Neha; Witharm, R.] Lawrence Berkeley Natl Lab, Cyclotron Rd, Berkeley, CA 94720 USA, Email: APoley@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000577273400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4572  
Permanent link to this record
 

 
Author Dreiner, H.K.; Koay, Y.S.; Kohler, D.; Martin Lozano, V.; Montejo Berlingen, J.; Nangia, S.; Strobbe, N. url  doi
openurl 
  Title (down) The ABC of RPV: classification of R-parity violating signatures at the LHC for small couplings Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 215 - 52pp  
  Keywords Supersymmetry; Specific BSM Phenomenology  
  Abstract We perform a classification of all potential supersymmetric R-parity violating signatures at the LHC to address the question: are existing bounds on supersymmetric models robust, or are there still signatures not covered by existing searches, allowing LHCscale supersymmetry to be hiding? We analyze all possible scenarios with one dominant RPV trilinear coupling at a time, allowing for arbitrary LSPs and mass spectra. We consider direct production of the LSP, as well as production via gauge-cascades, and find 6 different experimental signatures for the LL <overline> E -case, 6 for the LQ <overline> D -case, and 5 for the <overline> U <overline> D <overline> D -case; together these provide complete coverage of the RPV-MSSM landscape. This set of signatures is confronted with the existing searches by ATLAS and CMS. We find all signatures have been covered at the LHC, although not at the sensitivity level needed to probe the direct production of all LSP types. For the case of a dominant LL <overline> E -operator, we use CheckMATE to quantify the current lower bounds on the supersymmetric masses and find the limits to be comparable to or better than the R-parity conserving case. Our treatment can be easily extended to scenarios with more than one non-zero RPV coupling.  
  Address [Dreiner, Herbi K.; Koehler, Dominik; Nangia, Saurabh] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany, Email: dreiner@uni-bonn.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001039968700003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5604  
Permanent link to this record
 

 
Author Testov, D. et al; Gadea, A. doi  openurl
  Title (down) The 4pi highly-efficient light-charged-particle detector EUCLIDES, installed at the GALILEO array for in-beam gamma-ray spectroscopy Type Journal Article
  Year 2019 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 55 Issue 4 Pages 47 - 8pp  
  Keywords  
  Abstract .In a fusion-evaporation reaction, nuclei are produced by evaporating light-charged particles and neutrons from the compound nucleus. Typically, a nucleus of interest is produced as a result of a part of the total cross-section and, in order to guarantee a good channel discrimination, a particle detector, like the EUCLIDES 4 Si-ball array, is necessary. EUCLIDES has been quoted in more than a hundred publications resulting from many experiments performed in combination with the EUROBALL and GASP -ray spectrometers. The present paper reports on the upgraded version of EUCLIDES, that is presently coupled to the new GALILEO -ray spectrometer, installed at the Laboratori Nazionali di Legnaro, INFN. The design, characteristics and performance of the EUCLIDES array are presented and discussed.  
  Address [Testov, D.; Mengoni, D.; Goasduff, A.; John, P. R.; Boso, A.; Canet, F. J. Egea; Grassi, L.; Lunardi, S.; Recchia, F.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy, Email: testov@lnl.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000462944600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3965  
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Moline, A.; Palomares-Ruiz, S.; Vincent, A.C. url  doi
openurl 
  Title (down) The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 004 - 40pp  
  Keywords dark matter theory; intergalactic media; reionization  
  Abstract Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by the most recent cosmological measurements from the Planck satellite. Given current uncertainties on the description of the astrophysical processes driving the epochs of reionization, X-ray heating and Lyman-alpha pumping, we find that disentangling DM signatures from purely astrophysical effects, related to early-time star formation processes or late-time galaxy X-ray emissions, will be a challenging task. We conclude that only annihilations of DM particles with masses of similar to 100 MeV, could leave an unambiguous imprint on the 21 cm signal and, in particular, on the 21cm power spectrum. This is in contrast to previous, more optimistic results in the literature, which have claimed that strong signatures might also be present even for much higher DM masses. Additional measurements of the 21cm signal at different cosmic epochs will be crucial in order to break the strong parameter degeneracies between DM annihilations and astrophysical effects and undoubtedly single out a DM imprint for masses different from similar to 100 MeV.  
  Address [Lopez-Honorez, Laura] Vrije Univ Brussel, Theoret Natuurkunde, Pl Laan 2, B-1050 Brussels, Belgium, Email: llopezho@vub.ac.be;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000389859100050 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2899  
Permanent link to this record
 

 
Author n_TOF Collaboration (Weiss, C. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. doi  openurl
  Title (down) The (n,alpha) Reaction in the s-process Branching Point Ni-59 Type Journal Article
  Year 2014 Publication Nuclear Data Sheets Abbreviated Journal Nucl. Data Sheets  
  Volume 120 Issue Pages 208-210  
  Keywords  
  Abstract The (n,alpha) reaction in the radioactive Ni-59 is of relevance in nuclear astrophysics as Ni-59 can be considered as the first branching point in the astrophysical s-process. Its relevance in nuclear technology is especially related to material embrittlement in stainless steel. However, there is a discrepancy between available experimental data and the evaluated nuclear data files for this reaction. At the n_TOF facility at CERN, a dedicated system based on sCVD diamond diodes was set up to measure the Ni-59(n,alpha)Fe-56 cross section. The results of this measurement, with special emphasis on the dominant resonance at 203 eV, are presented here.  
  Address [Weiss, C.; Griesmayer, E.; Badurek, G.; Jericha, E.; Leeb, H.] Vienna Univ Technol, Atominst, Vienna, Austria, Email: christina.weiss@cern.ch  
  Corporate Author Thesis  
  Publisher Academic Press Inc Elsevier Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0090-3752 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339860100058 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1876  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva