|   | 
Details
   web
Records
Author Olivares-Del Campo, A.; Boehm, C.; Palomares-Ruiz, S.; Pascoli, S.
Title (up) Dark matter-neutrino Interactions through the lens of their cosmological Implications Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 7 Pages 075039 - 23pp
Keywords
Abstract Dark matter and neutrinos provide the two most compelling pieces of evidence for new physics beyond the Standard Model of particle physics, but they are often treated as two different sectors. The aim of this paper is to determine whether there are viable particle physics frameworks in which dark matter can be coupled to active neutrinos. We use a simplified model approach to determine all possible scenarios where there is such a coupling and study their astrophysical and cosmological signatures. We find that dark matter-neutrino interactions have an impact on structure formation and lead to indirect detection signatures when the coupling between dark matter and neutrinos is sufficiently large. This can be used to exclude a large fraction of the parameter space. In most cases, dark matter masses up to a few MeV and mediator masses up to a few GcV are ruled out. The exclusion region can be further extended when dark matter is coupled to a spin-1 mediator or when the dark matter particle and the mediator are degenerate in mass if the mediator is a spin-0 or spin-1/2 particle.
Address [Olivares-Del Campo, Andres; Boehm, Celine; Pascoli, Silvia] Univ Durham, Inst Particle Phys Phenomenol, South Rd, Durham DH1 3LE, England, Email: andres.olivares@durham.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000432959900006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3590
Permanent link to this record
 

 
Author Witte, S.J.; Rosauro-Alcaraz, S.; McDermott, S.D.; Poulin, V.
Title (up) Dark photon dark matter in the presence of inhomogeneous structure Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 35pp
Keywords Cosmology of Theories beyond the SM; Thermal Field Theory
Abstract Dark photon dark matter will resonantly convert into visible photons when the dark photon mass is equal to the plasma frequency of the ambient medium. In cosmological contexts, this transition leads to an extremely efficient, albeit short-lived, heating of the surrounding gas. Existing work in this field has been predominantly focused on understanding the implications of these resonant transitions in the limit that the plasma frequency of the Universe can be treated as being perfectly homogeneous, i.e. neglecting inhomogeneities in the electron number density. In this work we focus on the implications of heating from dark photon dark matter in the presence of inhomogeneous structure (which is particularly relevant for dark photons with masses in the range 10(-15) eV less than or similar to m(A ') less than or similar to 10(-12) eV), emphasizing both the importance of inhomogeneous energy injection, as well as the sensitivity of cosmological observations to the inhomogeneities themselves. More specifically, we derive modified constraints on dark photon dark matter from the Ly-alpha forest, and show that the presence of inhomogeneities allows one to extend constraints to masses outside of the range that would be obtainable in the homogeneous limit, while only slightly relaxing their strength. We then project sensitivity for near-future cosmological surveys that are hoping to measure the 21cm transition in neutral hydrogen prior to reionization, and demonstrate that these experiments will be extremely useful in improving sensitivity to masses near similar to 10(-14) eV, potentially by several orders of magnitude. Finally, we discuss implications for reionization, early star formation, and late-time y-type spectral distortions, and show that probes which are inherently sensitive to the inhomogeneous state of the Universe could resolve signatures unique to the light dark photon dark matter scenario, and thus offer a fantastic potential for a positive detection.
Address [Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Samuel.Witte@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000543433700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4447
Permanent link to this record
 

 
Author Caputo, A.; Liu, H.W.; Mishra-Sharma, S.; Ruderman, J.T.
Title (up) Dark Photon Oscillations in Our Inhomogeneous Universe Type Journal Article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 125 Issue 22 Pages 221303 - 8pp
Keywords
Abstract A dark photon kinetically mixing with the ordinary photon represents one of the simplest viable extensions to the standard model, and would induce oscillations with observable imprints on cosmology. Oscillations are resonantly enhanced if the dark photon mass equals the ordinary photon plasma mass, which tracks the free electron number density. Previous studies have assumed a homogeneous Universe; in this Letter, we introduce for the first time an analytic formalism for treating resonant oscillations in the presence of inhomogeneities of the photon plasma mass. We apply our formalism to determine constraints from cosmic microwave background photons oscillating into dark photons, and from heating of the primordial plasma due to dark photon dark matter converting into low-energy photons. Including the effect of inhomogeneities demonstrates that prior homogeneous constraints are not conservative, and simultaneously extends current experimental limits into a vast new parameter space.
Address [Caputo, Andrea] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: andrea.caputo@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000591812900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4641
Permanent link to this record
 

 
Author Yang, W.Q.; Mena, O.; Pan, S.; Di Valentino, E.
Title (up) Dark sectors with dynamical coupling Type Journal Article
Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 100 Issue 8 Pages 083509 - 11pp
Keywords
Abstract Coupled dark matter-dark energy scenarios arc modeled via a dimensionless parameter xi, which controls the strength of their interaction. While this coupling is commonly assumed to be constant, there is no underlying physical law or symmetry that forbids a time-dependent xi parameter. The most general and complete interacting scenarios between the two dark sectors should therefore allow for such a possibility, and it is the main purpose of this study to constrain two possible and well-motivated coupled cosmologies by means of the most recent and accurate early- and late-time universe observations. We find that CMB data alone prefer xi(z) > 0 and therefore a smaller amount of dark matter, alleviating some crucial and well-known cosmological data tensions. An objective assessment of the Bayesian evidence for the coupled models explored here shows no particular preference for the presence of a dynamical dark sector coupling.
Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000489039100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4166
Permanent link to this record
 

 
Author Câmara, H.B.; Joaquim, F.R.; Valle, J.W.F.
Title (up) Dark-sector seeded solution to the strong CP problem Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 9 Pages 095003 - 6pp
Keywords
Abstract We propose a novel realization of the Nelson-Barr mechanism “seeded” by a dark sector containing scalars and vectorlike quarks. Charge parity (CP) and a Z8 symmetry are spontaneously broken by the complex vacuum expectation value of a singlet scalar, leaving a residual Z2 symmetry that stabilizes dark matter (DM). A complex Cabibbo-Kobayashi-Maskawa matrix arises via one-loop corrections to the quark mass matrix mediated by the dark sector. In contrast with other proposals where nonzero contributions to the strong CP phase arise at the one-loop level, in our case this occurs only at two loops, enhancing naturalness. Our scenario also provides a viable weakly interacting massive particle scalar DM candidate.
Address [Camara, H. B.; Joaquim, F. R.] Univ Tecn Lisboa, Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: henrique.b.camara@tecnico.ulisboa.pt;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001115232100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5840
Permanent link to this record
 

 
Author Hansen, M.T.; Romero-Lopez, F.; Sharpe, S.R.
Title (up) Decay amplitudes to three hadrons from finite-volume matrix elements Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 113 - 44pp
Keywords Lattice QCD; Kaon Physics
Abstract We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Luscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating K -> 3 pi weak decay, the isospin-breaking eta -> 3 pi QCD transition, and the electromagnetic gamma (*) -> 3 pi amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic g – 2.
Address [Hansen, Maxwell T.] Univ Edinburgh, Sch Phys & Astron, Higgs Ctr Theoret Phys, Edinburgh EH9 3FD, Midlothian, Scotland, Email: maxwell.hansen@ed.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000640574400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4789
Permanent link to this record
 

 
Author HISPEC-DESPEC Collaboration (Polettini, M. et al); Algora, A.; Morales, A.I.; Orrigo, S.E.A.
Title (up) Decay studies in the A similar to 225 Po-Fr region from the DESPEC campaign at GSI in 2021 Type Journal Article
Year 2022 Publication Nuovo Cimento C Abbreviated Journal Nuovo Cim. C
Volume 45 Issue 5 Pages 125 - 4pp
Keywords
Abstract The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region.
Address [Polettini, M.; Benzoni, G.; Genna, D.; Bracco, A.; Bottoni, S.; Camera, F.; Crespi, F. C. L.; Gamba, E. R.; Leoni, S.; Million, B.; Porzio, C.; Wieland, O.; Ziliani, S.] Univ Milan, Dipartimento Fis, Milan, Italy
Corporate Author Thesis
Publisher Soc Italiana Fisica Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2037-4909 ISBN Medium
Area Expedition Conference
Notes WOS:000819174100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5292
Permanent link to this record
 

 
Author IDS Collaboration (Stryjczyk, M. et al); Nacher, E.
Title (up) Decay studies of the long-lived states in Tl-186 Type Journal Article
Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 102 Issue 2 Pages 024322 - 9pp
Keywords
Abstract Decay spectroscopy of the long-lived states in Tl-186 has been performed at the ISOLDE Decay Station at ISOLDE, CERN. The a decay from the low-spin (2(-)) state in Tl-186 was observed for the first time and a half-life of 3.4(-0.)(4)(+0.5) s was determined. Based on the alpha-decay energy, the relative positions of the long-lived states were fixed, with the (2(-)) state as the ground state, the 7((+)) state at 77(56) keV, and the 10((-)) state at 451(56) keV. The level scheme of the internal decay of the Tl-186(10((-))) state [T-1/2 = 3.40(9) s], which was known to decay solely through emission of 374-keV gamma-ray transition, was extended and a lower limit for the beta-decay branching b(beta) > 5.9(3)% was determined. The extracted retardation factors for the gamma decay of the 10((-) )state were compared to the available data in neighboring odd-odd thallium isotopes indicating the importance of the pi d(3/2) shell in the isomeric decay and significant structure differences between Tl-184 and Tl-186.
Address [Stryjczyk, M.; Andel, B.; Rezynkina, K.; Van Duppen, P.; De Witte, H.; Huyse, M.] Katholieke Univ Leuven, Inst Kern Stralingsfys, Celestijnenlaan 200D, B-3001 Leuven, Belgium, Email: marek.stryjczyk@kuleuven.be
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000562378100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4509
Permanent link to this record
 

 
Author Kuo, J.L.; Lattanzi, M.; Cheung, K.; Valle, J.W.F.
Title (up) Decaying warm dark matter and structure formation Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 12 Issue 12 Pages 026 - 24pp
Keywords cosmological simulations; dark matter simulations
Abstract We examine the cosmology of warm dark matter (WDM), both stable and decaying, from the point of view of structure formation. We compare the matter power spectrum associated to WDM masses of 1.5 keV and 0.158 keV, with that expected for the stable cold dark matter ACDM Xi SCDM paradigm, taken as our reference model. We scrutinize the effects associated to the warm nature of dark matter, as well as the fact that it decays. The decaying warm dark matter (DWDM) scenario is well-motivated, emerging in a broad class of particle physics theories where neutrino masses arise from the spontaneous breaking of a continuous global lepton number symmetry. The majoron arises as a Nambu-Goldstone boson, and picks up a mass from gravitational effects, that explicitly violate global symmetries. The majoron necessarily decays to neutrinos, with an amplitude proportional to their tiny mass, which typically gives it cosmologically long lifetimes. Using N-body simulations we show that our DWDM picture leads to a viable alternative to the ACDM scenario, with predictions that can differ substantially on small scales.
Address [Kuo, Jui-Lin; Cheung, Kingman] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan, Email: juilinkuo@gapp.nthu.edu.tw;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000453858100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3851
Permanent link to this record
 

 
Author Botella, F.J.; Branco, G.C.; Rebelo, M.N.; Silva-Marcos, J.I.; Bastos, J.F.
Title (up) Decays of the heavy top and new insights on epsilon(K) in a one-VLQ minimal solution to the CKM unitarity problem Type Journal Article
Year 2022 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 4 Pages 360 - 16pp
Keywords
Abstract We propose a minimal extension of the Standard Model where an up-type vector-like quark, denoted T, is introduced and provides a simple solution to the CKM unitarity problem. We adopt the Botella-Chau parametrization in order to extract the 4 x 3 quark mixing matrix which contains the three angles of the 3 x 3 CKM matrix plus three new angles denoted theta(14), theta(24), theta(34). It is assumed that the mixing of T with standard quarks is dominated by theta(14). Imposing a recently derived, and much more restrictive, upper-bound on the New Physics contributions to epsilon(K) , we find, in the limit of exact theta(14) dominance where the other extra angles vanish, that epsilon(NP)(K) is too large. However, if one relaxes the exact theta(14) dominance limit, there exists a parameter region, where one may obtain epsilon(NP)(K) in agreement with experiment while maintaining the novel pattern of T decays with the heavy quark decaying predominantly to the light quarks d and u. We also find a reduction in the decay rate of K-L -> pi(0)nu(nu) over bar.
Address [Botella, Francisco J.] Univ Valencia, CSIC, Dept Fis Teor, Burjassot 46100, Spain, Email: Francisco.J.Botella@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000787321000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5206
Permanent link to this record