|   | 
Details
   web
Records
Author King, S.F.; Molina Sedgwick, S.; Parke, S.J.; Prouse, N.W.
Title (up) Effects of matter density profiles on neutrino oscillations for T2HK and T2HKK Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 7 Pages 076019 - 16pp
Keywords
Abstract This paper explores the effects of changes in matter density profiles on neutrino oscillation probabilities, and whether these could potentially be seen by the future Hyper-Kamiokande long-baseline oscillation experiment (T2HK). The analysis is extended to include the possibility of having an additional detector in Korea (T2HKK). In both cases, we find that these effects will be immeasurable, as the magnitudes of the changes in the oscillation probabilities induced in all density profile scenarios considered here remain smaller than the estimated experimental sensitivity to the oscillation probabilities of each experiment, for both appearance and disappearance channels. Therefore, we conclude that using a constant density profile is sufficient for both the T2HK and T2HKK experiments.
Address [King, Stephen F.; Molina Sedgwick, Susana] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England, Email: s.f.king@soton.ac.uk;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000527887200007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4380
Permanent link to this record
 

 
Author Biswas, S. et al; Perez-Vidal, R.M.; Domingo-Pardo, C.
Title (up) Effects of one valence proton on seniority and angular momentum of neutrons in neutron-rich(51)( 122-)(131)Sb isotopes Type Journal Article
Year 2019 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 99 Issue 6 Pages 064302 - 21pp
Keywords
Abstract Background: Levels fulfilling the seniority scheme and relevant isomers are commonly observed features in semimagic nuclei; for example, in Sn isotopes (Z = 50). Seniority isomers in Sn, with dominantly pure neutron configurations, directly probe the underlying neutron-neutron (vv) interaction. Furthermore, an addition of a valence proton particle or hole, through neutron-proton (v pi) interaction, affects the neutron seniority as well as the angular momentum. Purpose: Benchmark the reproducibility of the experimental observables, like the excitation energies (E-x) and the reduced electric-quadrupole transition probabilities [B(E2)], with the results obtained from shell-model interactions for neutron-rich Sn and Sb isotopes with N < 82. Study the sensitivity of the aforementioned experimental observables to the model interaction components. Furthermore, explore from a microscopic point of view the structural similarity between the isomers in Sn and Sb, and thus the importance of the valence proton. Methods: The neutron-rich Sb122-131 isotopes were produced as fission fragments in the reaction Be-9(U-238, f) with 6.2 MeV/u beam energy. A unique setup, consisting of AGATA, VAMOS++, and EXOGAM detectors, was used which enabled the prompt-delayed gamma-ray spectroscopy of fission fragments in the time range of 100 ns to 200 μs. Results: New isomers and prompt and delayed transitions were established in the even-A Sb122-131 isotopes. In the odd-A Sb122-131 isotopes, new prompt and delayed gamma-ray transitions were identified, in addition to the confirmation of the previously known isomers. The half-lives of the isomeric states and the B(E2) transition probabilities of the observed transitions depopulating these isomers were extracted. Conclusions: The experimental data was compared with the theoretical results obtained in the framework of large-scale shell-model (LSSM) calculations in a restricted model space. Modifications of several components of the shell-model interaction were introduced to obtain a consistent agreement with the excitation energies and the B(E2) transition probabilities in neutron-rich Sn and Sb isotopes. The isomeric configurations in Sn and Sb were found to be relatively pure. Furthermore, the calculations revealed that the presence of a single valence proton, mainly in the g(7/2) orbital in Sb isotopes, leads to significant mixing (due to the v pi interaction) of (i) the neutron seniorities (upsilon(v)) and (ii) the neutron angular momentum (I-v). The above features have a weak impact on the excitation energies, but have an important impact on the B(E2) transition probabilities. In addition, a constancy of the relative excitation energies irrespective of neutron seniority and neutron number in Sn and Sb was observed.
Address [Biswas, S.; Lemasson, A.; Rejmund, M.; Navin, A.; Kim, Y. H.; Michelagnoli, C.; Clement, E.; de France, G.; Fremont, G.; Goupil, J.; Jacquot, B.; Li, H. J.; Menager, A.; More, V; Ropert, J.; Lefevre, A.; Saillant, F.] CNRS, GANIL, CEA, IN2P3,DRF, Bd Henri Becquerel,BP 55027, F-14076 Caen 5, France, Email: biswas@ganil.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000470856500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4051
Permanent link to this record
 

 
Author Ikeno, N.; Ono, A.; Nara, Y.; Ohnishi, A.
Title (up) Effects of Pauli blocking on pion production in central collisions of neutron-rich nuclei Type Journal Article
Year 2020 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 101 Issue 3 Pages 034607 - 9pp
Keywords
Abstract Pauli blocking is carefully investigated for the processes of NN <-> N Delta and Delta -> N pi in heavy-ion collisions, aiming at a more precise prediction of the pi(-)/pi(+) ratio which is an important observable to constrain the high-density symmetry energy. We use the AMD + JAM approach, which combines the antisymmetrized molecular dynamics for the time evolution of nucleons and the Jet AA Microscopic transport model to treat processes for Delta resonances and pions. As is known in general transport-code simulations, it is difficult to treat Pauli blocking very precisely due to unphysical fluctuations and additional smearing of the phase-space distribution function, when Pauli blocking is treated in the standard method of JAM. We propose an improved method in AMD + JAM to use the Wigner function precisely calculated in AMD as the blocking probability. Different Pauli blocking methods are compared in heavy-ion collisions of neutron-rich nuclei, Sn-132+Sn-124, at 270 MeV/nucleon. With the more accurate method, we find that Pauli blocking is stronger, in particular for the neutron in the final state in NN -> N Delta and Delta -> N pi, compared to the case with a proton in the final state. Consequently, the pi(-)/pi(+) ratio becomes higher when the Pauli blocking is improved, the effect of which is found to be comparable to the sensitivity to the high-density symmetry energy.
Address [Ikeno, Natsumi] Tottori Univ, Dept Agr Life & Environm Sci, Tottori 6808551, Japan
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000519701800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4327
Permanent link to this record
 

 
Author Foffa, S.; Sturani, R.; Torres Bobadilla, W.J.
Title (up) Efficient resummation of high post-Newtonian contributions to the binding energy Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 165 - 18pp
Keywords Classical Theories of Gravity; Black Holes; Effective Field Theories
Abstract A factorisation property of Feynman diagrams in the context the Effective Field Theory approach to the compact binary problem has been recently employed to efficiently determine the static sector of the potential at fifth post-Newtonian (5PN) order. We extend this procedure to the case of non-static diagrams and we use it to fix, by means of elementary algebraic manipulations, the value of more than one thousand diagrams at 5PN order, that is a substantial fraction of the diagrams needed to fully determine the dynamics at 5PN. This procedure addresses the redundancy problem that plagues the computation of the binding energy with respect to more “efficient” observables like the scattering angle, thus making the EFT approach in harmonic gauge at least as scalable as the others methods.
Address [Foffa, Stefano] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland, Email: stefano.foffa@unige.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000621231300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4740
Permanent link to this record
 

 
Author Breso-Pla, V.; Falkowski, A.; Gonzalez-Alonso, M.; Monsalvez-Pozo, K.
Title (up) EFT analysis of New Physics at COHERENT Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 074 - 53pp
Keywords Non-Standard Neutrino Properties; Specific BSM Phenomenology; Neutrino Interactions; SMEFT
Abstract Using an effective field theory approach, we study coherent neutrino scattering on nuclei, in the setup pertinent to the COHERENT experiment. We include non-standard effects both in neutrino production and detection, with an arbitrary flavor structure, with all leading Wilson coefficients simultaneously present, and without assuming factorization in flux times cross section. A concise description of the COHERENT event rate is obtained by introducing three generalized weak charges, which can be associated (in a certain sense) to the production and scattering of nu(e), nu(mu) and (nu) over bar (mu) on the nuclear target. Our results are presented in a convenient form that can be trivially applied to specific New Physics scenarios. In particular, we find that existing COHERENT measurements provide percent level constraints on two combinations of Wilson coefficients. These constraints have a visible impact on the global SMEFT fit, even in the constrained flavor-blind setup. The improvement, which affects certain 4-fermion LLQQ operators, is significantly more important in a flavor-general SMEFT. Our work shows that COHERENT data should be included in electroweak precision studies from now on.
Address [Breso-Pla, Victor; Gonzalez-Alonso, Martin; Monsalvez-Pozo, Kevin] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: vicbreso@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000988320800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5549
Permanent link to this record
 

 
Author Falkowski, A.; Gonzalez-Alonso, M.; Kopp, J.; Soreq, Y.; Tabrizi, Z.
Title (up) EFT at FASER nu Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 086 - 46pp
Keywords Effective Field Theories; Neutrino Physics
Abstract We investigate the sensitivity of the FASER nu detector to new physics in the form of non-standard neutrino interactions. FASER nu, which will be installed 480 m downstream of the ATLAS interaction point, will for the first time study interactions of multi-TeV neutrinos from a controlled source. Our formalism – which is applicable to any current and future neutrino experiment – is based on the Standard Model Effective Theory (SMEFT) and its counterpart, Weak Effective Field Theory (WEFT), below the electroweak scale. Starting from the WEFT Lagrangian, we compute the coefficients that modify neutrino production in meson decays and detection via deep-inelastic scattering, and we express the new physics effects in terms of modified flavor transition probabilities. For some coupling structures, we find that FASER nu will be able to constrain interactions that are two to three orders of magnitude weaker than Standard Model weak interactions, implying that the experiment will be indirectly probing new physics at the multi-TeV scale. In some cases, FASER nu constraints will become comparable to existing limits – some of them derived for the first time in this paper – already with 150 fb(-1) of data.
Address [Falkowski, Adam] Univ Paris Saclay, CNRS, IN2P3, IJCLab, F-91405 Orsay, France, Email: afalkows017@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000707348700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5002
Permanent link to this record
 

 
Author Gisbert, H.; Miralles, V.; Ruiz Vidal, J.
Title (up) Electric dipole moments from colour-octet scalars Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 077 - 25pp
Keywords Beyond Standard Model; CP violation
Abstract We present the contributions to electric dipole moments (EDMs) induced by the Yukawa couplings of an additional electroweak doublet of colour-octet scalars. The full set of one-loop diagrams and the enhanced higher-order effects from Barr-Zee diagrams are computed for the quark (chromo-)EDM, along with the two-loop contributions to the Weinberg operator. Using the stringent experimental upper limits on the neutron EDM, constraints on the parameter space of the Manohar-Wise model are derived.
Address [Gisbert, Hector] TU Dortmund, Fak Phys, Otto Hahn Str 4, D-44221 Dortmund, Germany, Email: hector.gisbert@tu-dortmund.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000782602900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5198
Permanent link to this record
 

 
Author del Rio, A.; Ester, E.A.
Title (up) Electrically charged black hole solutions in semiclassical gravity and dynamics of linear perturbations Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 10 Pages 105022 - 23pp
Keywords
Abstract We explore quantum corrections of electrically charged black holes subject to vacuum polarization effects of fermion fields in QED. Solving this problem exactly is challenging so we restrict to perturbative corrections that one can obtain using the heat kernel expansion in the one -loop effective action for electrons. Starting from the corrections originally computed by Drummond and Hathrell, we solve the full semiclassical Einstein -Maxwell system of coupled equations to leading order in Planck 's constant and find a new electrically charged, static black hole solution. To probe these quantum corrections, we study electromagnetic and gravitational (axial) perturbations on this background and derive the coupled system of Regge-Wheeler master equations that govern the propagation of these waves. In the classical limit, our results agree with previous findings in the literature. We finally compare these results with those that one can obtain by working out the Euler-Heisenberg effective action. We find again a new electrically charged static black hole spacetime and derive the coupled system of Regge-Wheeler equations governing the propagation of axial electromagnetic and gravitational perturbations. Results are qualitatively similar in both cases. We briefly discuss some challenges found in the numerical computation of the quasinormal mode frequency spectra when quantum corrections are included.
Address [del Rio, Adrian] Univ Valencia, Dept Fis Teor, CSIC, Dr Moliner 50, Burjassot 46100, Valencia, Spain, Email: adrian.rio@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001239211500007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6151
Permanent link to this record
 

 
Author Botella, F.J.; Cornet-Gomez, F.; Nebot, M.
Title (up) Electron and muon g-2 anomalies in general flavor conserving two-Higgs-doublet models Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 3 Pages 035023 - 19pp
Keywords
Abstract In general two-Higgs-doublet models (2HDMs) without scalar flavor changing neutral couplings (SFCNC) in the lepton sector, the electron, muon, and tau interactions can be decoupled in a robust framework, stable under renormalization group evolution. In this framework, the breaking of lepton flavor universality (LFU) goes beyond the mass proportionality, opening the possibility to accommodate in a simple manner a different behavior among charged leptons. We analyze simultaneously the electron and muon (g – 2) anomalies in the context of these general flavor conserving models in the leptonic sector (gtlFC). We consider two different models, I-gtlFC and II-gelFC, in which the quark Yukawa couplings coincide, respectively, with the ones in type I and in type II 2HDMs. We find two types of solutions that fully reproduce both (g – 2) anomalies, and which are compatible with experimental constraints from LEP and LHC, from LFU, from flavor and electroweak physics, and with theoretical constraints in the scalar sector. In the first type of solution, all the new scalars have masses in the 1-2.5 TeV range, the vacuum expectation values (vevs) of both doublets are quite similar in magnitude, and both anomalies are dominated by two loop Barr-Zee contributions. This solution appears in both models. There is a second type of solution, where one loop contributions are dominant in the muon anomaly, all new scalars have masses below 1 TeV, and the ratio of vevs is in the range 10-100. The second neutral scalar H is the lighter among the new scalars, with a mass in the 210-390 GeV range while the pseudoscalar A is the heavier, with a mass in the range 400-900 GeV. The new charged scalar H-+/- is almost degenerate either with the scalar or with the pseudoscalar. This second type of solution only appears in the I-gelFC model. Both solutions require the soft breaking of the Z(2) symmetry of the Higgs potential.
Address [Botella, Francisco J.; Cornet-Gomez, Fernando] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Francisco.J.Botella@uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000562002500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4508
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Aparisi Pozo, J.A.; Bailey, A.J.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo, F.L.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Ferrer, A.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; Lacasta, C.; Lozano Bahilo, J.J.; Madaffari, D.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Miñano, M.; Mitsou, V.A.; Rodriguez Bosca, S.; Rodriguez Rodriguez, D.; Ruiz-Martinez, A.; Salt, J.; Santra, A.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title (up) Electron and photon energy calibration with the ATLAS detector using 2015-2016 LHC proton-proton collision data Type Journal Article
Year 2019 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 14 Issue Pages P03017 - 60pp
Keywords Calorimeter methods; Pattern recognition, cluster finding, calibration and fitting methods; Performance of High Energy Physics Detectors
Abstract This paper presents the electron and photon energy calibration obtained with the ATLAS detector using about 36 fb(-1) of LHC proton-proton collision data recorded at root s = 13 TeV in 2015 and 2016. The different calibration steps applied to the data and the optimization of the reconstruction of electron and photon energies are discussed. The absolute energy scale is set using a large sample of Z boson decays into electron-positron pairs. The systematic uncertainty in the energy scale calibration varies between 0.03% to 0.2% in most of the detector acceptance for electrons with transverse momentum close to 45 GeV. For electrons with transverse momentum of 10 GeV the typical uncertainty is 0.3% to 0.8% and it varies between 0.25% and 1% for photons with transverse momentum around 60 GeV. Validations of the energy calibration with J/psi -> e(+)e(-) decays and radiative Z boson decays are also presented.
Address [Duvnjak, D.; Jackson, P.; Oliver, J. L.; Petridis, A.; Qureshi, A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000463330900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3972
Permanent link to this record