|   | 
Details
   web
Records
Author Amerio, A.; Calore, F.; Serpico, P.D.; Zaldivar, B.
Title (up) Deepening gamma-ray point-source catalogues with sub-threshold information Type Journal Article
Year 2024 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 055 - 18pp
Keywords gamma ray theory; Frequentist statistics
Abstract We propose a novel statistical method to extend Fermi-LAT catalogues of highlatitude -y-ray sources below their nominal threshold. To do so, we rely on the determination of the differential source -count distribution of sub -threshold sources which only provides the statistical flux distribution of faint sources. By simulating ensembles of synthetic skies, we assess quantitatively the likelihood for pixels in the sky with relatively low -test statistics to be due to sources, therefore complementing the source -count distribution with spatial information. Besides being useful to orient efforts towards multi -messenger and multi -wavelength identification of new -y-ray sources, we expect the results to be especially advantageous for statistical applications such as cross -correlation analyses.
Address [Amerio, Aurelio; Zaldivar, Bryan] Univ Valencia, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: aurelio.amerio@ific.uv.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:001194945600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6032
Permanent link to this record
 

 
Author Otten, S.; Rolbiecki, K.; Caron, S.; Kim, J.S.; Ruiz de Austri, R.; Tattersall, J.
Title (up) DeepXS: fast approximation of MSSM electroweak cross sections at NLO Type Journal Article
Year 2020 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 1 Pages 12 - 9pp
Keywords
Abstract We present a deep learning solution to the prediction of particle production cross sections over a complicated, high-dimensional parameter space. We demonstrate the applicability by providing state-of-the-art predictions for the production of charginos and neutralinos at the Large Hadron Collider (LHC) at the next-to-leading order in the phenomenological MSSM-19 and explicitly demonstrate the performance for pp ->(chi) over tilde (+)(1)(chi) over tilde (-)(1), (chi) over tilde (0)(2)(chi) over tilde (0)(2) and (chi) over tilde (0)(2)(chi) over tilde (+/-)(1) as a proof of concept which will be extended to all SUSY electroweak pairs. We obtain errors that are lower than the uncertainty from scale and parton distribution functions with mean absolute percentage errors of well below 0.5% allowing a safe inference at the next-to-leading order with inference times that improve the Monte Carlo integration procedures that have been available so far by a factor of O(10(7)) from O(min) to O(mu s) per evaluation.
Address [Otten, Sydney; Caron, Sascha] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands, Email: Sydney.Otten@ru.nl
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000513271500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4279
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M.
Title (up) Delta L >= 4 lepton number violating processes Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 1 Pages 015035 - 12pp
Keywords
Abstract We discuss the experimental prospects for observing processes which violate lepton number (Delta L) in four units ( or more). First, we reconsider neutrinoless quadruple beta decay, deriving a model independent and very conservative lower limit on its half- life of the order of 10(41) ys for Nd-150. This renders quadruple beta decay unobservable for any feasible experiment. We then turn to a more general discussion of different possible low-energy processes with values Delta L >= 4. A simple operator analysis leads to rather pessimistic conclusions about the observability at low-energy experiments in all cases we study. However, the situation looks much brighter for accelerator experiments. For two example models with Delta L = 4 and another one with Delta L = 5, we show how the LHC or a hypothetical future pp collider, such as the FCC, could probe multilepton number violating operators at the TeV scale.
Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Spain Edificio Inst Paterna,Apartado 22085, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000439791500005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3675
Permanent link to this record
 

 
Author Fonseca, R.M.; Hirsch, M.; Srivastava, R.
Title (up) Delta L=3 processes: Proton decay and the LHC Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 7 Pages 075026 - 7pp
Keywords
Abstract We discuss lepton number violation in three units. From an effective field theory point of view, Delta L = 3 processes can only arise from dimension 9 or higher operators. These operators also violate baryon number, hence many of them will induce proton decay. Given the high dimensionality of these operators, in order to have a proton half-life in the observable range, the new physics associated to Delta L = 3 processes should be at a scale as low as 1 TeV. This opens up the possibility of searching for such processes not only in proton decay experiments but also at the LHC. In this work we analyze the relevant d = 9, 11, 13 operators which violate lepton number in three units. We then construct one simple concrete model with interesting low- and high-energy phenomenology.
Address [Fonseca, Renato M.; Hirsch, Martin; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000430459800005 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3560
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsou, S.T.
Title (up) delta(CP) for leptons and a new take on CP physics with the FSM Type Journal Article
Year 2021 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 36 Issue Pages 2150236 - 22pp
Keywords Phenomenology beyond the Standard Model; framed Standard Model; leptonic CP violation; CP physics
Abstract A bonus of the framed Standard Model (FSM), constructed initially to explain the mass and mixing patterns of quarks and leptons, is a solution (without axions) of the strong CP problem by cancelling the theta-angle term theta(I) Tr(H-mu v H-mu v*) in coloura by a chiral transformation on a quark zero mode which is inherent in FSM, and produces thereby a CP-violating phase in the CKM matrix similar in size to what is observed.' Extending here to flavour, one finds that there are two terms proportional to Tr(G(mu v) G(mu v)*): (a) in the action from flavour instantons with unknown coefficient, say theta(I)', (b) induced by the above FSM solution to the strong CP-problem with therefore known coefficient theta(C)'. Both terms can be cancelled in the FSM by a chiral transformation on the lepton zero mode to give a Jarlskog invariant J' in the PMNS matrix for leptons of order 10(-2), as is hinted by the experiment. But if, as suggested in Ref. 2, the term theta(I)' is to be cancelled by a chiral transformation in the predicted hidden sector to solve the strong CP problem therein, leaving only the term theta(C)' to be cancelled by the chiral transformation on leptons, then the following prediction results: J' similar to -0.012 (delta(CP)'similar to (1.11)pi) which is (i) of the right order, (ii) of the right sign and (iii) in the range favoured by the present experiment. Together with the earlier result for quarks, this offers an attractive unified treatment of all known CP physics.
Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000732963000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5058
Permanent link to this record
 

 
Author NEXT Collaboration (Kekic, M. et al); Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N.
Title (up) Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 189 - 22pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in Xe-136. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a Th-228 calibration source. We train a network on Monte Carlo-simulated events and show that, by applying on-the-fly data augmentation, the network can be made robust against differences between simulation and data. The use of CNNs offers significant improvement in signal efficiency and background rejection when compared to previous non-CNN-based analyses.
Address [Hauptman, J.; Nygren, D. R.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: marija.kekic@usc.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000616730800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4729
Permanent link to this record
 

 
Author NEXT Collaboration (Haefner, J. et al); Carcel, S.; Carrion, J.V.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Novella, P.; Querol, M.; Romo-Luque, C.; Sorel, M.; Soto-Oton, J.; Uson, A.
Title (up) Demonstration of event position reconstruction based on diffusion in the NEXT-white detector Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue 5 Pages 518 - 13pp
Keywords
Abstract Noble element time projection chambers are a leading technology for rare event detection in physics, such as for dark matter and neutrinoless double beta decay searches. Time projection chambers typically assign event position in the drift direction using the relative timing of prompt scintillation and delayed charge collection signals, allowing for reconstruction of an absolute position in the drift direction. In this paper, alternate methods for assigning event drift distance via quantification of electron diffusion in a pure high pressure xenon gas time projection chamber are explored. Data from the NEXT-White detector demonstrate the ability to achieve good position assignment accuracy for both high- and low-energy events. Using point-like energy deposits from Kr-83m calibration electron captures (E similar to 45 keV), the position of origin of low-energy events is determined to 2 cm precision with bias <1 mm. A convolutional neural network approach is then used to quantify diffusion for longer tracks (E >= 1.5 MeV), from radiogenic electrons, yielding a precision of 3 cm on the event barycenter. The precision achieved with these methods indicates the feasibility energy calibrations of better than 1% FWHM at Q(beta beta) in pure xenon, as well as the potential for event fiducialization in large future detectors using an alternate method that does not rely on primary scintillation.
Address [Haefner, J.; Contreras, T.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA, Email: karen.navarro@uta.edu
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001228898800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6138
Permanent link to this record
 

 
Author NEXT Collaboration (Novella, P. et al); Carcel, S.; Carrion, J.V.; Lopez, F.; Lopez-March, N.; Martin-Albo, J.; Muñoz Vidal, J.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.
Title (up) Demonstration of neutrinoless double beta decay searches in gaseous xenon with NEXT Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 190 - 35pp
Keywords Dark Matter and Double Beta Decay (experiments); Rare Decay
Abstract The NEXT experiment aims at the sensitive search of the neutrinoless double beta decay in Xe-136, using high-pressure gas electroluminescent time projection chambers. The NEXT-White detector is the first radiopure demonstrator of this technology, operated in the Laboratorio Subterr & aacute;neo de Canfranc. Achieving an energy resolution of 1% FWHM at 2.6 MeV and further background rejection by means of the topology of the reconstructed tracks, NEXT-White has been exploited beyond its original goals in order to perform a neu-trinoless double beta decay search. The analysis considers the combination of 271.6 days of Xe-136-enriched data and 208.9 days of 136Xe-depleted data. A detailed background mod-eling and measurement has been developed, ensuring the time stability of the radiogenic and cosmogenic contributions across both data samples. Limits to the neutrinoless mode are obtained in two alternative analyses: a background-model-dependent approach and a novel direct background-subtraction technique, offering results with small dependence on the background model assumptions. With a fiducial mass of only 3.50 +/- 0.01 kg of Xe-136-enriched xenon, 90% C.L. lower limits to the neutrinoless double beta decay are found in the T-1/2(0 nu) > 5.5x10(23) -1.3x10(24) yr range, depending on the method. The presented techniques stand as a pro of-of-concept for the searches to be implemented with larger NEXT detectors.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA, Email: pau.novella@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001085073500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5798
Permanent link to this record
 

 
Author NEXT Collaboration (McDonald, A.D. et al); Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Gomez-Cadenas, J.J.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Perez, J.; Renner, J.; Rodriguez, J.; Simon, A.; Sofka, C.; Sorel, M.; Torrent, J.; Yahlali, N.
Title (up) Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging Type Journal Article
Year 2018 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 120 Issue 13 Pages 132504 - 6pp
Keywords
Abstract A new method to tag the barium daughter in the double-beta decay of Xe-136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (similar to 2 nm), and detected with a statistical significance of 12.9 sigma over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.
Address [McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Monrabal, F.; Rogers, L.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: austin.mcdonald@uta.edu;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000428243400005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3538
Permanent link to this record
 

 
Author NEXT Collaboration (Ferrario, P. et al); Benlloch-Rodriguez, J.M.; Kekic, M.; Renner, J.; Uson, A.; Alvarez, V.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Herrero, P.; Lopez-March, N.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Yahlali, N.
Title (up) Demonstration of the event identification capabilities of the NEXT-White detector Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 052 - 20pp
Keywords Dark Matter and Double Beta Decay (experiments)
Abstract In experiments searching for neutrinoless double-beta decay, the possibility of identifying the two emitted electrons is a powerful tool in rejecting background events and therefore improving the overall sensitivity of the experiment. In this paper we present the first measurement of the efficiency of a cut based on the different event signatures of double and single electron tracks, using the data of the NEXT-White detector, the first detector of the NEXT experiment operating underground. Using a Th-228 calibration source to produce signal-like and background-like events with energies near 1.6 MeV, a signal efficiency of 71.6 +/- 1.5(stat) +/- 0.3(sys) % for a background acceptance of 20.6 +/- 0.4(stat) +/- 0.3(sys)% is found, in good agreement with Monte Carlo simulations. An extrapolation to the energy region of the neutrinoless double beta decay by means of Monte Carlo simulations is also carried out, and the results obtained show an improvement in background rejection over those obtained at lower energies.
Address [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, 12 Phys Hall, Ames, IA 50011 USA, Email: paola.ferrario@dipc.org
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000509259700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4260
Permanent link to this record