toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sieber, H.; Kirpichnikov, D.; Voronchikhin, I.V.; Crivelli, P.; Gninenko, S.N.; Kirsanov, M.M.; Krasnikov, N.; Molina-Bueno, L.; Sekatskii, S.K. url  doi
openurl 
  Title (down) Probing hidden sectors with a muon beam: Implication of spin-0 dark matter mediators for the muon (g-2) anomaly and the validity of the Weiszäcker-Williams approach Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 5 Pages 056018 - 11pp  
  Keywords  
  Abstract In addition to vector (V) type new particles extensively discussed previously, both CP-even (S) and CP-odd (P) spin-0 dark matter (DM) mediators can couple to muons and be produced in the bremsstrahlung reaction mu- + N -mu- + N + S(P). Their possible subsequent invisible decay into a pair of Dirac DM particles, S(P) -chi chi over bar , can be detected in fixed target experiments through missing energy signature. In this paper, we focus on the case of experiments using high-energy muon beams. For this reason, we derive the differential cross sections involved using the phase space Weiszacker-Williams approximation and compare them to the exact-tree-level calculations. The formalism derived can be applied in various experiments that could observe muon-spin-0 DM interactions. This can happen in present and future proton beam-dump experiments such as NA62, SHIP, HIKE, and SHADOWS; in muon fixed target experiments as NA64 mu, MUonE and M3; in neutrino experiments using powerful proton beams such as DUNE. In particular, we focus on the NA64 μexperiment case, which uses a 160 GeV muon beam at the CERN Super Proton Synchrotron accelerator. We compute the derived cross sections, the resulting signal yields and we discuss the experiment projected sensitivity to probe the relic DM parameter space and the (g – 2)mu anomaly favored region considering 1011 and 1013 muons on target.  
  Address [Sieber, H.; Crivelli, P.] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, CH-8093 Zurich, Switzerland, Email: henri.hugo.sieber@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001106669600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5830  
Permanent link to this record
 

 
Author Gariazzo, S.; Lopez-Honorez, L.; Mena, O. url  doi
openurl 
  Title (down) Primordial power spectrum features and f(NL) constraints Type Journal Article
  Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 92 Issue 6 Pages 063510 - 12pp  
  Keywords  
  Abstract The simplest models of inflation predict small non-Gaussianities and a featureless power spectrum. However, there exist a large number of well-motivated theoretical scenarios in which large non-Gaussianties could be generated. In general, in these scenarios the primordial power spectrum will deviate from its standard power law shape. We study, in a model-independent manner, the constraints from future large-scale structure surveys on the local non-Gaussianity parameter f(NL) when the standard power law assumption for the primordial power spectrum is relaxed. If the analyses are restricted to the large-scale-dependent bias induced in the linear matter power spectrum by non-Gaussianites, the errors on the f(NL) parameter could be increased by 60% when exploiting data from the future DESI survey, if dealing with only one possible dark matter tracer. In the same context, a nontrivial bias vertical bar delta f(NL)vertical bar similar to 2.5 could be induced if future data are fitted to the wrong primordial power spectrum. Combining all the possible DESI objects slightly ameliorates the problem, as the forecasted errors on f(NL) would be degraded by 40% when relaxing the assumptions concerning the primordial power spectrum shape. Also, the shift on the non-Gaussianity parameter is reduced in this case, vertical bar delta f(NL)vertical bar similar to 1.6. The addition of cosmic microwave background priors ensures robust future f(NL) bounds, as the forecasted errors obtained including these measurements are almost independent on the primordial power spectrum features, and vertical bar delta f(NL)vertical bar similar to 0.2, close to the standard single-field slow-roll paradigm prediction.  
  Address [Gariazzo, Stefano] Univ Turin, Dept Phys, I-10125 Turin, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000360886300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2382  
Permanent link to this record
 

 
Author Motohashi, H.; Hu, W. url  doi
openurl 
  Title (down) Primordial black holes and slow-roll violation Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 6 Pages 063503 - 9pp  
  Keywords  
  Abstract For primordial black holes (PBH) to be the dark matter in single-field inflation, the slow-roll approximation must be violated by at least O(1) in order to enhance the curvature power spectrum within the required number of e-folds between cosmic microwave background scales and PBH mass scales. Power spectrum predictions which rely on the inflaton remaining on the slow-roll attractor can fail dramatically leading to qualitatively incorrect conclusions in models like an inflection potential and misestimate the mass scale in a running mass model. We show that an optimized temporal evaluation of the Hubble slow-roll parameters to second order remains a good description for a wide range of PBH formation models where up to a 10(7) amplification of power occurs in 10 e-folds or more.  
  Address [Motohashi, Hayato] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000409436800005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3286  
Permanent link to this record
 

 
Author Raj, N.; Takhistov, V.; Witte, S.J. url  doi
openurl 
  Title (down) Presupernova neutrinos in large dark matter direct detection experiments Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 4 Pages 043008 - 10pp  
  Keywords  
  Abstract The next Galactic core-collapse supernova (SN) is a highly anticipated observational target for neutrino telescopes. However, even prior to collapse, massive dying stars shine copiously in “pre-supernova” (pre-SN) neutrinos, which can potentially act as efficient SN warning alarms and provide novel information about the very last stages of stellar evolution. We explore the sensitivity to pre-SN neutrinos of large-scale direct dark matter detection experiments, which, unlike dedicated neutrino telescopes, take full advantage of coherent neutrino-nucleus scattering. We find that argon-based detectors with target masses of O(100)tons (i.e., comparable in size to the proposed ARGO experiment) operating at sub-keV thresholds can detect O(10-100) pre-SN neutrinos coming from a source at a characteristic distance of similar to 200 pc, such as Betelgeuse (alpha Orionis). Large-scale xenon-based experiments with similarly low thresholds could also be sensitive to pre-SN neutrinos. For a Betelgeuse-type source, large-scale dark matter experiments could provide a SN warning siren similar to 10 hours prior to the explosion. We also comment on the complementarity of large-scale direct dark matter detection experiments and neutrino telescopes in the understanding of core-collapse SN.  
  Address [Raj, Nirmal] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada, Email: nraj@triumf.ca;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513575900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4285  
Permanent link to this record
 

 
Author Bertolini, S.; Maiezza, A.; Nesti, F. url  doi
openurl 
  Title (down) Present and future K and B meson mixing constraints on TeV scale left-right symmetry Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 89 Issue 9 Pages 095028 - 15pp  
  Keywords  
  Abstract We revisit the Delta F = 2 transitions in the K and B-d,B-s neutral meson systems in the context of the minimal left-right symmetric model. We take into account, in addition to up-to-date phenomenological data, the contributions related to the renormalization of the flavor-changing neutral Higgs tree-level amplitude. These contributions were neglected in recent discussions, albeit formally needed in order to obtain a gauge-independent result. Their impact on the minimal LR model is crucial and twofold. First, the effects are relevant in B meson oscillations, for both CP conserving and CP violating observables, so that for the first time these imply constraints on the LR scenario which compete with those of the K sector (plagued by long-distance uncertainties). Second, they sizably contribute to the indirect kaon CP violation parameter epsilon. We discuss the bounds from B and K mesons in both cases of LR symmetry: generalized parity (P) and charge conjugation (C). In the case of P, the interplay between the CP-violation parameters epsilon and epsilon' leads us to rule out the regime of very hierarchical bidoublet vacuum expectation values nu(2)/nu(1) < m(b)/m(t) similar or equal to 0.02. In general, by minimizing the scalar field contribution up to the limit of the perturbative regime and by definite values of the relevant CP phases in the charged right-handed currents, we find that a right-handed gauge boson W-R as light as 3 TeV is allowed at the 95% C. L. This is well within the reach of direct detection at the next LHC run. If not discovered, within a decade the upgraded LHCb and Super B factories may reach an indirect sensitivity to a left-right scale of 8 TeV.  
  Address [Bertolini, Stefano] SISSA, Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy, Email: stefano.bertolini@sissa.it;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000336759700009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1819  
Permanent link to this record
 

 
Author Boucenna, M.S.; Morisi, S.; Peinado, E.; Valle, J.W.F.; Shimizu, Y. url  doi
openurl 
  Title (down) Predictive discrete dark matter model and neutrino oscillations Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 7 Pages 073008 - 5pp  
  Keywords  
  Abstract Dark matter stability can be achieved through a partial breaking of a flavor symmetry. In this framework we propose a type-II seesaw model where left-handed matter transforms nontrivially under the flavor group Delta(54), providing correlations between neutrino oscillation parameters, consistent with the recent Daya-Bay and RENO reactor angle measurements, as well as lower bounds for neutrinoless double beta decay. The dark matter phenomenology is provided by a Higgs-portal.  
  Address [Boucenna, M. S.; Morisi, S.; Peinado, E.; Valle, J. W. F.] Univ Valencia, Inst Fis Corpuscular CSIC, Edificio Inst Paterna, Astroparticle & High Energy Phys Grp, E-46071 Valencia, Spain, Email: boucenna@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000309859000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1194  
Permanent link to this record
 

 
Author Chen, P.; Ding, G.J.; Lu, J.N.; Valle, J.W.F. url  doi
openurl 
  Title (down) Predictions from warped flavor dynamics based on the T ' family group Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 9 Pages 095014 - 17pp  
  Keywords  
  Abstract We propose a realistic theory of fermion masses and mixings using a five-dimensional warped scenario where all fermions propagate in the bulk and the Higgs field is localized on the IR bran. The assumed T' flavor symmetry is broken on the branes by flavon fields, providing a consistent scenario where fermion mass hierarchies arise from adequate choices of the bulk mass parameters, while quark and lepton mixing angles are restricted by the family symmetry. Neutrino mass splittings, mixing parameters and the Dirac CP phase all arise from the type-I seesaw mechanism and are tightly correlated, leading to predictions for the neutrino oscillation parameters, as well as expected 0 nu beta beta decay rates within reach of upcoming experiments. The scheme also provides a good global description of flavor observables in the quark sector.  
  Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000589907700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4610  
Permanent link to this record
 

 
Author Dai, L.R.; Molina, R.; Oset, E. url  doi
openurl 
  Title (down) Prediction of new T-cc states of D* D* and D-s*D* molecular nature Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 1 Pages 016029 - 12pp  
  Keywords  
  Abstract We extend the theoretical framework used to describe the T-cc state as a molecular state of D* D and make predictions for the D* D* and D-s(*) D) systems, finding that they lead to bound states only in the J(P) = 1+ channel. Using input needed to describe the T-cc state, basically one parameter to regularize the loops of the Bethe-Salpeter equation, we find bound states with bindings of the order of MeVand similar widths for the D*D* system, while the D*s D-* system develops a strong cusp around the threshold.  
  Address [Dai, L. R.] Huzhou Univ, Sch Sci, Huzhou 313000, Zhejiang, Peoples R China, Email: dailianrong@zjhu.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000751870200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5112  
Permanent link to this record
 

 
Author Dias, J.M.; Roca, L.; Sakai, S. url  doi
openurl 
  Title (down) Prediction of new states from D(*)B(*)(B)over-bar(*) three-body interactions Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 97 Issue 5 Pages 056019 - 8pp  
  Keywords  
  Abstract We study three-body systems composed of D(*), B(*), and (B) over bar(*) in order to look for possible bound states or resonances. In order to solve the three-body problem, we use the fixed center approach for the Faddeev equations considering that the B*(B) over bar*(B (B) over bar) are clusterized systems, generated dynamically, which interact with a third particle D((D) over bar) whose mass is much smaller than the two-body bound states forming the cluster. In the DB*(B) over bar*, D*B*(B) over bar*, DB (B) over bar, and D*B (B) over bar systems with I = 1/2, we found clear bound state peaks with binding energies typically a few tens MeV and more uncertain broad resonant states about ten MeV above the threshold with widths of a few tens MeV.  
  Address [Dias, J. M.; Sakai, S.] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Inst Invest Paterna, Apartado 22085, Valencia 46071, Spain, Email: jorgivan.morais@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000428240900017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3536  
Permanent link to this record
 

 
Author Xiao, C.W.; Bayar, M.; Oset, E. url  doi
openurl 
  Title (down) Prediction of D*-multi-rho states Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 86 Issue 9 Pages 094019 - 10pp  
  Keywords  
  Abstract We present a study of the many-body interaction between a D* and multi-rho. We use an extrapolation to SU(4) of the hidden gauge formalism, which produced dynamically the resonances f(2)(1270) in the rho rho interaction and D-2* (2460) in the rho D* interaction. We then let a third particle, rho, D*, or a resonance, collide with them, evaluating the scattering amplitudes in terms of the fixed center approximation of the Faddeev equations. We find several clear resonant structures above 2800 MeV in the multibody scattering amplitudes. They would correspond to new charmed resonances, D-3*, D-4*, D-5*, and D-6*, which are not yet listed in the Particle Data Group, which would be analogous to the rho(3)(1690), f(4)(2050), rho(5)(2350), f(6)(2510) and K-3*(1780), K-4*(2045), K-5*(2380) described before as multi-rho and K*-multi-rho states, respectively.  
  Address [Xiao, C. W.; Bayar, M.; Oset, E.] Univ Valencia, CSIC, Inst Invest Paterna, Ctr Mixto,IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000310989500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1223  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva