Vento, V. (2017). Skyrmions at high density. Int. J. Mod. Phys. E, 26(1-2), 1740029–15pp.
Abstract: The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark-gluon plasma. We justify the origin of the quarkyonic phase transition in a chiral-quark model and describe its formulation in terms of Skyrme crystals.
|
Vento, V. (2018). Skyrmions at high density. Phys. Part. Nuclei Lett., 15(4), 367–370.
Abstract: The phase diagram of quantum chromodynamics is conjectured to have a rich structure containing at least three forms of matter: hadronic nuclear matter, quarkyonic matter and quark gluon plasma. We describe its formulation in terms of Skyrme crystals and justify the origin of the quarkyonic phase transition in a chiral-quark model.
|
Mantovani-Sarti, V., Drago, A., Vento, V., & Park, B. Y. (2013). The Baryon Number Two System in the Chiral Soliton Model. Few-Body Syst., 54(1-4), 513–516.
Abstract: We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.
|
Traini, M., Rinaldi, M., Scopetta, S., & Vento, V. (2017). The effective cross section for double parton scattering within a holographic AdS/QCD approach. Phys. Lett. B, 768, 270–273.
Abstract: A first attempt to apply the AdS/QCD framework for a bottom-up approach to the evaluation of the effective cross section for double parton scattering in proton-proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.
|
Fanchiotti, H., Garcia Canal, C. A., Mayosky, M., Veiga, A., & Vento, V. (2023). The Geometric Phase in Classical Systems and in the Equivalent Quantum Hermitian and Non-Hermitian PT-Symmetric Systems. Braz. J. Phys., 53(6), 143–11pp.
Abstract: The decomplexification procedure allows one to show mathematically (stricto sensu) the equivalence (isomorphism) between the quantum dynamics of a system with a finite number of basis states and a classical dynamics system. This unique way of connecting different dynamics was used in the past to analyze the relationship between the well-known geometric phase present in the quantum evolution discovered by Berry and its generalizations, with their analogs, the Hannay phases, in the classical domain. In here, this analysis is carried out for several quantum hermitian and non-hermitian PT-symmetric Hamiltonians and compared with the Hannay phase analysis in their classical isomorphic equivalent systems. As the equivalence ends in the classical domain with oscillator dynamics, we exploit the analogy to propose resonant electric circuits coupled with a gyrator, to reproduce the geometric phase coming from the theoretical solutions, in simulated laboratory experiments.
|