|   | 
Details
   web
Records
Author Fernandez-Soler, P.; Ruiz Arriola, E.
Title (up) Coarse graining of NN inelastic interactions up to 3 GeV: Repulsive versus structural core Type Journal Article
Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 96 Issue 1 Pages 014004 - 14pp
Keywords
Abstract The repulsive short-distance core is one of the main paradigms of nuclear physics which even seems confirmed by QCD lattice calculations. On the other hand nuclear potentials at short distances are motivated by high energy behavior where inelasticities play an important role. We analyze NN interactions up to 3 GeV in terms of simple coarse grained complex and energy dependent interactions. We discuss two possible and conflicting scenarios which share the common feature of a vanishing wave function at the core location in the particular case of S waves. We find that the optical potential with a repulsive core exhibits a strong energy dependence whereas the optical potential with the structural core is characterized by a rather adiabatic energy dependence which allows one to treat inelasticity perturbatively. We discuss the possible implications for nuclear structure calculations of both alternatives.
Address [Fernandez-Soler, P.] Univ Valencia, CSIC, Ctr Mixto, Inst Invest Paterna,Inst Fis Corpuscular IFIC, Apartado 22085, E-46071 Valencia, Spain, Email: pedro.fernandez@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000406536800002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3230
Permanent link to this record
 

 
Author Diamanti, R.; Ando, S.; Gariazzo, S.; Mena, O.; Weniger, C.
Title (up) Cold dark matter plus not-so-clumpy dark relics Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 008 - 17pp
Keywords cosmological parameters from CMBR; dark matter theory; dwarfs galaxies; particle physics – cosmology connection
Abstract Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions, covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f(ncdm) of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2 sigma limits for non-cold dark matter particles with masses in the range 1-10 keV are f(ncdm) <= 0.29 (0.23) for fermions (bosons), and for masses in the 10-100 keV range they are f(ncdm) <= 0.43 (0.45), respectively.
Address [Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph] Univ Amsterdam, Inst Phys, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands, Email: r.diamanti@uva.nl;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000403482400010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3174
Permanent link to this record
 

 
Author Pakarinen, J. et al; Algora, A.
Title (up) Collectivity in Pb-196, Pb-198 isotopes probed in Coulomb-excitation experiments at REX-ISOLDE Type Journal Article
Year 2017 Publication Journal of Physics G Abbreviated Journal J. Phys. G
Volume 44 Issue 6 Pages 064009 - 10pp
Keywords Coulomb excitation; radioactive ion beams; gamma-ray spectroscopy; gamma transitions and level energies
Abstract The neutron-deficient Pb-196,Pb-198 isotopes have been studied in Coulomb-excitation experiments employing the Miniball gamma-ray spectrometer and radioactive ion beams from the REX-ISOLDE post-accelerator at CERN. The reduced transition probabilities of the first excited 2(+) states in Pb-196 and Pb-198 nuclei have been measured for the first time. Values of B (E2) = 18.2(-4.1)(+4.8) W. u. and B (E2) = 13.1(-3.5)(+4.9) W. u., were obtained, respectively. The experiment sheds light on the development of collectivity when moving from the regime governed by the generalised seniority scheme to a region, where intruding structures, associated with different deformed shapes, start to come down in energy and approach the spherical ground state.
Address [Pakarinen, J.; Grahn, T.; Herzan, A.; Jakobsson, U.; Konki, J.; Peura, P.; Rahkila, P.] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland, Email: janne.pakarinen@jyu.fi
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000400875800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3126
Permanent link to this record
 

 
Author Gimenez-Alventosa, V.; Antunes, P.C.G.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Andreo, P.
Title (up) Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy Type Journal Article
Year 2017 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 62 Issue 1 Pages 146-164
Keywords Monte Carlo; dosimetry; low-energy seed; collision-kerma; mass energy-absorption coefficients; energy-fluence correction factor
Abstract The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).
Address [Gimenez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: vijande@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000391567700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2923
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Izmaylov, A.; Novella, P.; Sorel, M.
Title (up) Combined Analysis of Neutrino and Antineutrino Oscillations at T2K Type Journal Article
Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 118 Issue 15 Pages 151801 - 9pp
Keywords
Abstract T2K reports its first results in the search for CP violation in neutrino oscillations using appearance and disappearance channels for neutrino-and antineutrino-mode beams. The data include all runs from January 2010 to May 2016 and comprise 7.482 x 10(20) protons on target in neutrino mode, which yielded in the far detector 32 e-like and 135 mu-like events, and 7.471 x 10(20) protons on target in antineutrino mode, which yielded 4 e-like and 66 mu-like events. Reactor measurements of sin(2) 2 theta(13) have been used as an additional constraint. The one-dimensional confidence interval at 90% for the phase delta(CP) spans the range (-3.13,-0.39) for normal mass ordering. The CP conservation hypothesis (delta(CP) = 0, pi) is excluded at 90% C.L.
Address [Ariga, A.; Ereditato, A.; Nirkko, M.; Pistillo, C.; Redij, A.; Wilkinson, C.] Univ Bern, LHEP, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000399957800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3104
Permanent link to this record