toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author DUNE Collaboration (Abi, B. et al); Antonova, M.; Barenboim, G.; Cervera-Villanueva, A.; De Romeri, V.; Fernandez Menendez, P.; Garcia-Peris, M.A.; Izmaylov, A.; Martin-Albo, J.; Masud, M.; Mena, O.; Novella, P.; Sorel, M.; Ternes, C.A.; Tortola, M.; Valle, J.W.F. url  doi
openurl 
  Title (down) Neutrino interaction classification with a convolutional neural network in the DUNE far detector Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 9 Pages 092003 - 20pp  
  Keywords  
  Abstract The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2-5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects.  
  Address [Decowski, M. P.; De Jong, P.] Univ Amsterdam, NL-1098 XG Amsterdam, Netherlands, Email: saul.alonso.monsalve@cern.ch;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000587596500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4598  
Permanent link to this record
 

 
Author NEXT Collaboration (Henriques, C.A.O. et al); Benlloch-Rodriguez, J.M.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Martinez-Vara, M.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title (down) Neutral Bremsstrahlung Emission in Xenon Unveiled Type Journal Article
  Year 2022 Publication Physical Review X Abbreviated Journal Phys. Rev. X  
  Volume 12 Issue 2 Pages 021005 - 23pp  
  Keywords  
  Abstract We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White time projection chamber (TPC) and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that is postulated to exist in xenon that has been largely overlooked. For photon emission below 1000 nm, the NBrS yield increases from about 10(-2) photon/e(-) cm(-1) bar(-1) at pressure-reduced electric field values of 50 V cm(-1) bar(-1) to above 3 x 10(-1) photon/e(-) cm(-1) bar(-1) at 500 V cm(-1) bar(-1). Above 1.5 kV cm(-1) bar(-1), values that are typically employed for electroluminescence, it is estimated that NBrS is present with an intensity around 1 photon/e(-) cm(-1) bar(-1), which is about 2 orders of magnitude lower than conventional, excimer-based electroluminescence. Despite being fainter than its excimeric counterpart, our calculations reveal that NBrS causes luminous backgrounds that can interfere, in either gas or liquid phase, with the ability to distinguish and/or to precisely measure low primary-scintillation signals (S1). In particular, we show this to be the case in the "buffer region, where keeping the electric field below the electroluminescence threshold does not suffice to extinguish secondary scintillation. The electric field leakage in this region should be mitigated to avoid intolerable levels of NBrS emission. Furthermore, we show that this new source of light emission opens up a viable path toward obtaining S2 signals for discrimination purposes in future single-phase liquid TPCs for neutrino and dark matter physics, with estimated yields up to 20-50 photons/e(-) cm(-1).  
  Address [Henriques, C. A. O.; Teixeira, J. M. R.; Monteiro, C. M. B.; Fernandes, A. F. M.; Fernandes, L. M. P.; Freitas, E. D. C.; dos Santos, J. M. F.] Univ Coimbra, Dept Phys, ILIBPhys, Rua Larga, P-3004516 Coimbra, Portugal, Email: henriques@uc.pt;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2160-3308 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000792590100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5220  
Permanent link to this record
 

 
Author Double Chooz collaboration (Abe, Y. et al); Novella, P. url  doi
openurl 
  Title (down) Muon capture on light isotopes measured with the Double Chooz detector Type Journal Article
  Year 2016 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 93 Issue 5 Pages 054608 - 18pp  
  Keywords  
  Abstract Using the Double Chooz detector, designed to measure the neutrino mixing angle theta(13), the products of mu(-) capture on C-12, C-13, N-14, and O-16 have been measured. Over a period of 489.5 days, 2.3 x 10(6) stopping cosmic mu(-) have been collected, of which 1.8 x 10(5) captured on carbon, nitrogen, or oxygen nuclei in the inner detector scintillator or acrylic vessels. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, beta-delayed neutrons. The most precise measurement of the rate of C-12(mu(-), nu)B-12 to date is reported: 6.57(-0.21)(+0.11) x 10(3) s(-1), or (17.35(-0.59)(+0.35))% of nuclear captures. By tagging excited states emitting gamma s, the ground state transition rate to B-12 has been determined to be 5.68(-0.23)(+0.14) x 10(3) s(-1). The heretofore unobserved reactions C-12(mu(-), nu alpha)Li-8, C-13(mu(-), nu n alpha)Li-8, and C-13(mu(-), nu n)B-12 are measured. Further, a population of beta n decays following stopping muons is identified with 5.5 sigma significance. Statistics limit our ability to identify these decays definitively. Assuming negligible production of He-8, the reaction C-13(mu(-), nu alpha)Li-9 is found to be present at the 2.7 sigma level. Limits are set on a variety of other processes.  
  Address [Alt, C.; Bekman, I.; Cabrera, A.; Hellwig, D.; Lucht, S.; Schoppmann, S.; Soiron, M.; Stahl, A.; Wiebusch, C.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany, Email: strait@hep.uchicago.edu  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375999500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2679  
Permanent link to this record
 

 
Author NEXT Collaboration; Carcel, S.; Carrion, J.V.; Felkai, R.; Kekic, M.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Martinez-Lema, G.; Muñoz Vidal, J.; Novella, P.; Palmeiro, B.; Querol, M.; Romo-Luque, C.; Sorel, M.; Uson, A.; Yahlali, N. url  doi
openurl 
  Title (down) Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture Type Journal Article
  Year 2020 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 47 Issue 7 Pages 075001 - 17pp  
  Keywords gaseous detectors; scintillators; scintillation and light emission processes; solid; gas and liquid scintillators  
  Abstract Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.  
  Address [Rogers, L.; Jones, B. J. P.; Laing, A.; Pingulkar, S.; Smithers, B.; Woodruff, K.; Byrnes, N.; Dingler, R.; McDonald, A. D.; Nygren, D. R.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA, Email: leslie.rogers@mavs.uta.edu  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000537753800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4423  
Permanent link to this record
 

 
Author NEXT Collaboration (Azevedo, C.D.R. et al); Gomez-Cadenas, J.J.; Alvarez, V.; Benlloch-Rodriguez, J.M.; Botas, A.; Carcel, S.; Carrion, J.V.; Diaz, J.; Felkai, R.; Ferrario, P.; Laing, A.; Liubarsky, I.; Lopez-March, N.; Martin-Albo, J.; Martinez, A.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Querol, M.; Renner, J.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N. url  doi
openurl 
  Title (down) Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 877 Issue Pages 157-172  
  Keywords Optical TPCs; Microscopic simulation; Xenon scintillation  
  Abstract We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.  
  Address [Azevedo, C. D. R.] Univ Aveiro, I3N, Phys Dept, Aveiro, Portugal, Email: Diego.Gonzalez.Diaz@usc.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000415128000022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3371  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva