|   | 
Details
   web
Records
Author Mathieu, V.; Vento, V.
Title (down) eta-eta ' mixing in the flavor basis and large N Type Journal Article
Year 2010 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 688 Issue 4-5 Pages 314-318
Keywords Meson; Mixing
Abstract The mass matrix for eta-eta' is derived in the flavor basis at O(p(4)) of the chiral Lagrangian using the large N approximation. Under certain assumptions, the mixing angle phi = 41.4 degrees and the decay constants ratio f(K)/f(pi) = 1.15 are calculated in agreement with the data. It appears that the FKS scheme arises as a special limit of the chiral Lagrangian. Their mass matrix is obtained without the hypothesis on the mixing pattern of the decay constants.
Address [Mathieu, Vincent] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Valencia, Spain, Email: vincent.mathieu@umons.ac.be
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000278242600012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 428
Permanent link to this record
 

 
Author Fanchiotti, H.; Garcia Canal, C.A.; Vento, V.
Title (down) Energy loss of monopolium in a medium Type Journal Article
Year 2023 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus
Volume 138 Issue 9 Pages 850 - 11pp
Keywords
Abstract We study the energy loss of excited monopolium in an atomic medium. We perform a classical calculation in line with a similar calculation performed for charged particles which leads in the non-relativistic limit to the Bethe-Bloch formula except for the density dependence of the medium, which we do not consider in this paper. Our result shows that for maximally deformed Rydberg states, the ionization of monopolium in a light atomic medium is similar to that of light ions.
Address [Fanchiotti, Huner; Garcia Canal, Carlos A.] Univ La Plata, IFLP CONICET, CC 67, RA-1900 La Plata, Argentina, Email: vicente.vento@uv.es
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes WOS:001189275500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6001
Permanent link to this record
 

 
Author Rinaldi, M.; Scopetta, S.; Traini, M.; Vento, V.
Title (down) Double parton scattering: A study of the effective cross section within a Light-Front quark model Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 752 Issue Pages 40-45
Keywords Partons; Multi parton interactions; Parton correlations
Abstract We present a calculation of the effective cross section sigma(eff), an important ingredient in the description of double parton scattering in proton-proton collisions. Our theoretical approach makes use of a Light-Front quark model as a framework to calculate the double parton distribution functions at low-resolution scale. QCD evolution is implemented to reach the experimental scale. The obtained values of sigma(eff) in the valence region are consistent with the present experimental scenario, in particular with the sets of data which include the same kinematical range. However the result of the complete calculation shows a dependence of sigma(eff) on x(i), a feature not easily seen in the available data, probably because of their low accuracy. Measurements of sigma(eff) in restricted x(i) regions are addressed to obtain indications on double parton correlations, a novel and interesting aspect of the three dimensional structure of the nucleon.
Address [Rinaldi, Matteo; Scopetta, Sergio] Univ Perugia, Dipartimento Fis & Geol, I-06123 Perugia, Italy, Email: sergio.scopetta@pg.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000368026000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2532
Permanent link to this record
 

 
Author Rinaldi, M.; Scopetta, S.; Traini, M.; Vento, V.
Title (down) Double Parton Distributions in Light-Front Constituent Quark Models Type Journal Article
Year 2015 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.
Volume 56 Issue 6-9 Pages 515-521
Keywords
Abstract Double parton distribution functions (dPDF), accessible in high energy proton-proton and proton-nucleus collisions, encode information on how partons inside a proton are correlated among each other and could represent a tool to explore the 3D proton structure. In recent papers, double parton correlations have been studied in the valence quark region, by means of constituent quark models. This framework allows to understand clearly the dynamical origin of the correlations and to establish which, among the features of the results, are model independent. Recent relevant results, obtained in a relativistic light-front scheme, able to overcome some drawbacks of previous calculations, such as the poor support, will be presented. Peculiar transverse momentum correlations, generated by the correct treatment of the boosts, are obtained. The role of spin correlations will be also shown. In this covariant approach, the symmetries of the dPDFs are unambiguously reproduced. The study of the QCD evolution of the model results has been performed in the valence sector, showing that, in some cases, the effect of evolution does not cancel that of correlations.
Address [Rinaldi, Matteo; Scopetta, Sergio] Univ Perugia, Dipartimento Fis & Geol, I-06100 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it
Corporate Author Thesis
Publisher Springer Wien Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0177-7963 ISBN Medium
Area Expedition Conference
Notes WOS:000360435800042 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2370
Permanent link to this record
 

 
Author Rinaldi, M.; Scopetta, S.; Vento, V.
Title (down) Double parton correlations in constituent quark models Type Journal Article
Year 2013 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 11 Pages 114021 - 9pp
Keywords
Abstract Double parton correlations, having effects on the double parton scattering processes occurring in high-energy hadron-hadron collisions, for example at the LHC, are studied in the valence quark region by means of constituent quark models. In this framework, two particle correlations are present without any additional prescription, at variance with what happens, for example, in independent particle models, such as the MIT bag model in its simplest version. From the present analysis, conclusions similar to the ones obtained recently in a modified version of the bag model can be drawn: correlations in the longitudinal momenta of the active quarks are found to be sizable, while those in transverse momentum are much smaller. However, the framework used allows us to understand clearly the dynamical origin of the correlations. In particular, it is shown that the small size of the correlations in transverse momentum is a model-dependent result, which would not occur if models with sizable quark orbital angular momentum were used to describe the proton. Our analysis permits us, therefore, to clarify the dynamical origin of the double parton correlations and to establish which, among the features of the results, are model independent. The possibility of testing the studied effects experimentally is discussed.
Address [Rinaldi, M.; Scopetta, S.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000321001100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1509
Permanent link to this record